Remark on fundamental solution for vorticity equation of two dimensional Navier – Stokes flows

(Dedicated to Professor Kôji Kubota on his sixtieth birthday)

Shin'ya MATSUI^{*} and Satosi TOKUNO

(Received May 9, 1996; Revised December 18, 1996)

Abstract. In this paper we treat a perturbed heat equation related to the vorticity equation for the Navier–Stokes flow in \mathbb{R}^2 . We get estimate for the fundamental solution of this equation. We note that estimate like ours played the essential role in the paper by Giga, Miyakawa and Osada [4] where they discussed existence of solution for Navier–Stokes equation in \mathbb{R}^2 with measure as initial vorticity.

 $Key \ words$: the incompressible Navier–Stokes equations, vorticity equation, fundamental solution, 2 dimensional flow.

1. Introduction and Results

Consider the incompressible Navier–Stokes equations in two dimensional Euclidean space \mathbf{R}^2 :

(NS)
$$\begin{cases} u_t - \nu \Delta u + (u, \nabla)u + \nabla p = 0, & \text{div } u = 0 & \text{in } (0, \infty) \times \mathbf{R}^2, \\ u|_{t=0} = u_0 & \text{in } \mathbf{R}^2, \end{cases}$$

where $u = u(t, x) = (u_1(t, x), u_2(t, x))$ is the velocity vector field, p = p(t, x) is the pressure, $\nu > 0$ is the kinematic viscosity, $u_t = \partial u/\partial t$, $\nabla = (\partial/\partial x_1, \partial/\partial x_2)$ and div $u = \partial u_1/\partial x_1 + \partial u_2/\partial x_2$.

For the vorticity $\omega(t, x) = \operatorname{rot} u(t, x) = \frac{\partial u_1}{\partial x_2} - \frac{\partial u_2}{\partial x_1}$, we reduce (NS) to the following equations by the well known Biot–Savart law:

(NSR)
$$\begin{cases} \omega_t - \nu \Delta \omega + (u, \nabla) \omega = 0, & u(t, x) = \mathbf{K} * \omega(t, x) \\ & \text{in } (0, \infty) \times \mathbf{R}^2, \\ \omega|_{t=0} = \omega_0 \equiv \operatorname{rot} u_0 & \text{in } \mathbf{R}^2, \end{cases}$$

¹⁹⁹¹ Mathematics Subject Classification : Primary 35Q30, Secondary 76D05.

^{*}Partially supported by Grant-in-Aid for Encouragement of Young Scientist (No. 07740126), Ministry of Education, Science and Culture of Japan.