Stability of symmetric systems under hyperbolic perturbations

(Dedicated to Professor Rentaro Agemi on his sixtieth birthday)

Tatsuo Nishitani

(Received April 30, 1996)

Abstract

Let $L(x)$ be the symbol of a $m \times m$ symmetric first order hyperbolic system with real constant coefficients. The range of $L(x)$ is a subspace, containing a positive definite $L(\theta)$, in the linear space of dimension $d(m)=m(m+1) / 2$ of all $m \times m$ real symmetric matrices. We study a hyperbolic perturbation $\tilde{L}(x)=L(x)+R(x)$ of $L(x)$, that is $R(x)$ is $O\left(|x|^{2}\right)(x \rightarrow 0)$ which is real analytic and all eigenvalues λ of $\tilde{L}(x+\lambda \theta)$ are real near the origin. We prove that if the dimension of the range of $L(x)$ is greater than $d(m)-m+2$, then generically, every such hyperbolic perturbation is trivial, namely there are real analytic $A(x), B(x)$ near the origin with $A(0) B(0)=I$ such that $A(x) \tilde{L}(x) B(x)$ becomes symmetric. When $m=3$, the same conclusion holds if the range is greater than 3.

Key words: hyperbolic perturbation, symmetric system, non-degenerate.

1. Introduction

Let

$$
\mathcal{L}(x)=\sum_{j=1}^{n} A_{j} x_{j}, \quad x=\left(x_{1}, \ldots, x_{n}\right)
$$

where A_{j} are real symmetric $m \times m$ matrices which are linearly independent. Since we are interested in hyperbolic systems we assume that $\mathcal{L}(\Theta)$ is positive definite with some $\Theta \in \mathbf{R}^{n}$. We may suppose that $\mathcal{L}(\Theta)=I$ considering $\mathcal{L}(\Theta)^{-1 / 2} \mathcal{L}(x) \mathcal{L}(\Theta)^{-1 / 2}$. The range $\mathcal{L}=\left\{\mathcal{L}(x) \mid x \in \mathbf{R}^{n}\right\}$ of $\mathcal{L}(x)$ is a linear subspace in $M^{s}(m, \mathbf{R})$, the space of all real symmetric $m \times m$ matrices. Note that the range contains the identity I and of n dimensional because A_{j} are linearly independent.

We study the symbol $\mathcal{P}(x)$ of a hyperbolic system which is close to $\mathcal{L}(x)$ near $x=0$;

$$
\mathcal{P}(x)=\mathcal{L}(x)+R(x)
$$

