Generating alternating groups

Naoki Chigira

(Received March 11, 1996; Revised June 21, 1996)

Abstract. We will give an elementary proof of the following: For any nonidentity element x in the alternating group A_n on n symbols, there exists an element y such that x and y generate A_n .

Key words: the alternating group, block.

Let S_n be the symmetric group on the symbols $\Omega = \{1, 2, ..., n\}$ and A_n the alternating group on Ω . Isaacs and Zieschang [1] give an elementary proof of the following:

Theorem A Assume that $n \neq 4$ and let $x \in S_n$ be an arbitrary nonidentity element. Then there exists an element $y \in S_n$ such that $S_n = \langle x, y \rangle$.

They say "A result similar to Theorem A is known to be valid for the alternating group A_n for all values of n. Although it seems likely that a proof of this result along the lines of our proof of Theorem A might exist, there are technical difficulties in some cases, and we have not actually found such a proof."

In this note, we will give a proof for A_n along the lines of the proof of Theorem A by Isaacs and Zieschang [1].

Theorem Let $x \in A_n$ be an arbitrary nonidentity element. Then there exists an element $y \in A_n$ such that $A_n = \langle x, y \rangle$.

A nonempty subset $\Delta \subseteq \Omega$ is said to be a block for G if Δ^x is either disjoint from or equal to Δ for each element $x \in G$. A group G is said to be primitive if the only blocks for G are the singleton subset or the whole set Ω .

The following theorems and lemma play an important role in our proof.

Theorem (Jordan) Suppose that G is a primitive subgroup of S_n . If G contains a 3-cycle, then either $G = S_n$ or $G = A_n$.

¹⁹⁹¹ Mathematics Subject Classification: 20B15, 20B35.