Generating alternating groups

Naoki Chigira
(Received March 11, 1996; Revised June 21, 1996)

Abstract

We will give an elementary proof of the following: For any nonidentity element x in the alternating group A_{n} on n symbols, there exists an element y such that x and y generate A_{n}.

Key words: the alternating group, block.

Let S_{n} be the symmetric group on the symbols $\Omega=\{1,2, \ldots, n\}$ and A_{n} the alternating group on Ω. Isaacs and Zieschang [1] give an elementary proof of the following:

Theorem A Assume that $n \neq 4$ and let $x \in S_{n}$ be an arbitrary nonidentity element. Then there exists an element $y \in S_{n}$ such that $S_{n}=\langle x, y\rangle$.

They say " A result similar to Theorem A is known to be valid for the alternating group A_{n} for all values of n. Although it seems likely that a proof of this result along the lines of our proof of Theorem A might exist, there are technical difficulties in some cases, and we have not actually found such a proof."

In this note, we will give a proof for A_{n} along the lines of the proof of Theorem A by Isaacs and Zieschang [1].

Theorem Let $x \in A_{n}$ be an arbitrary nonidentity element. Then there exists an element $y \in A_{n}$ such that $A_{n}=\langle x, y\rangle$.

A nonempty subset $\Delta \subseteq \Omega$ is said to be a block for G if Δ^{x} is either disjoint from or equal to Δ for each element $x \in G$. A group G is said to be primitive if the only blocks for G are the singleton subset or the whole set Ω.

The following theorems and lemma play an important role in our proof.
Theorem (Jordan) Suppose that G is a primitive subgroup of S_{n}. If G contains a 3-cycle, then either $G=S_{n}$ or $G=A_{n}$.

