An oscillation result for a certain linear differential equation of second order

Katsuya Ishizaki

(Received January 4, 1996; Revised May 21, 1996)

Abstract

We consider the second order equation $f^{\prime \prime}+\left(e^{P_{1}(z)}+e^{P_{2}(z)}+Q(z)\right) f=0$, where $P_{1}(z)=\zeta_{1} z^{n}+\ldots, P_{2}(z)=\zeta_{2} z^{n}+\ldots$, are non-constant polynomials, $Q(z)$ is an entire function and the order of Q is less than n. Bank, Laine and Langley studied the cases when $Q(z)$ is a polynomial and ξ_{2} / ξ_{1} is either non-real or real negative, while the author and Tohge studied the cases when $\xi_{1}=\xi_{2}$ or ξ_{2} / ξ_{1} is non-real. In this paper we treat the case when ζ_{2} / ζ_{1} is real and positive.

Key words: complex oscillation theory, Nevanlinna theory, Value distribution.

1. Introduction

We are concerned with the zero distribution of solutions of some linear differential equations of second order

$$
\begin{equation*}
f^{\prime \prime}+A(z) f=0 \tag{1.1}
\end{equation*}
$$

where $A(z)$ is an entire function. We assume that the reader is familiar with the standard notation in Nevanlinna theory (see e.g. [8], [10], [11]). Let f be a meromorphic function. As usual, $m(r, f), N(r, f)$, and $T(r, f)$ denote the proximity function, the counting function, and the characteristic function of f, respectively. We denote by $S(r, f)$ any quantity of growth $o(T(r, f))$ as $r \rightarrow \infty$ outside of a possible exceptional set of finite linear measure. We use the symbols $\sigma(f)$ to denote the order of f, and $\lambda(f)$ to denote the exponent of convergence of the zero-sequence of f. The studies and problems on complex oscillation theory are found in, for instance, Laine [10, Chapter $3-8]$ and Yang, Wen, Li and Chiang [14, pp. 357-358].

This note is devoted to the study of the equation (1.1) in the case

[^0]
[^0]: 1991 Mathematics Subject Classification : Primary 34A20, 30D35; Secondary 34C10, 34A30.

 This work was supported in part by a Grant-in-Aid for General Scientific Research from the Ministry of Education, Science and Culture 07740127,08740117 and by a Grant from NIPPON Institute of Technology 102.

