Extrinsic shape of circles and the standard imbedding of a Cayley projective plane

Toshiaki Adachi, Sadahiro Maeda and Koichi Ogive

(Received March 29, 1996)

Abstract

The main purpose of this paper is to give a characterization of the parallel imbedding of a Cayley projective plane $P_{C a y}(c)$ into a real space form in terms of the extrinsic shape of particular circles on $P_{C a y}(c)$.

Key words: cayley projective plane, parallel imbedding, cayley circle, totally real circle.

1. Introduction

To what extent can we determine the properties of a submanifold by observing the extrinsic shape of geodesics or circles of a submanifold? As typical cases, we recall that a submanifold is totally geodesic (resp. totally umbilic with parallel mean curvature vector) if and only if all geodesics (resp. circles) of the submanifold are geodesics (resp. circles) in the ambient space ([7]).

On the other hand, it is well-known that a sphere is the only surface in E^{3} all of whose geodesics are circles in E^{3}. This result is generalized as follows: A submanifold of a real space form is isotropic and parallel if and only if all geodesics of the submanifold are circles in the ambient space ([4], [9]).

Then, what is the extrinsic shape of circles of an isotropic parallel submanifold of a real space form? An isotropic parallel submanifold of a real space form is locally equivalent either to the first standard imbedding of one of the compact symmetric spaces of rank one or to the second standard imbedding of a sphere. It is proved in [3] that the image of a circle under the first standard imbedding of a real projective space or the second standard imbedding of a sphere is never a circle in the ambient space. On the contrary, some circles of a complex projective space or a quaternionic projective space are mapped to circles in the ambient space under the first standard imbedding ([1]).

