On Kato's square root problem

A.F.M. ter ELST and Derek W. ROBINSON

(Received April 24, 1996)

Abstract. We consider abstract versions,

$$H = -\sum_{i,j=1}^{n} A_i c_{ij} A_j + \sum_{i=1}^{n} (c_i A_i + A_i c'_i) + c_0,$$

of second-order partial differential operators defined by sectorial forms on a Hilbert space \mathcal{H} . The A_i are closed skew-symmetric operators with a common dense domain \mathcal{H}_1 and the c_{ij} , c_i etc. are bounded operators on \mathcal{H} with the real part of the matrix $C = (c_{ij})$ strictly positive-definite.

We assume that $D(L) \subseteq \bigcap_{i,j=1}^{n} D(A_i A_j)$ where $L = -\sum_{i=1}^{n} A_i^2$ is defined as a form on $\mathcal{H}_1 \times \mathcal{H}_1$. We further assume the c_{ij} are bounded operators on one of the Sobolev spaces $\mathcal{H}_{\gamma} = D((I+L)^{\gamma/2}), \gamma \in \langle 0, 1 \rangle$, equipped with the graph norm. Then we prove that

$$D((\lambda I + H)^{1/2}) = D((\lambda I + H^*)^{1/2}) = \mathcal{H}_1$$
(1)

for all large $\lambda \in \mathbf{R}$.

As a corollary we deduce that in any unitary representation of a Lie group all secondorder subelliptic operators in divergence form with Hölder continuous principal coefficients satisfy (1).

Let K be a closed maximal accretive, regular accretive, sectorial operator on the Hilbert space \mathcal{H} with associated regular sesquilinear form k and Re K the closed maximal accretive operator associated with the real part of k. Kato [Kat1], Theorem 3.1, proved that $D(K^{\delta}) = D(K^{*\delta}) = D((\text{Re } K)^{\delta})$ for all $\delta \in [0, 1/2)$ but Lions [Lio] subsequently gave an example of a closed maximal accretive operator for which $D(K^{1/2}) \neq D(K^{*1/2})$. Then Kato [Kat2], Theorems 1 and 2, proved that $D(K^{1/2}) = D(K^{*1/2})$ if, and only if, both $D(K^{1/2}) \subseteq D(k)$ and $D(K^{*1/2}) \subseteq D(k)$. More generally $D(K^{1/2}) \subseteq D(k)$ if and only if $D(k) \subseteq D(K^{*1/2})$ with a similar equivalence if K and K* are interchanged. Therefore the identity of any two of the sets $D(K^{1/2}), D(K^{*1/2}), D(k)$ implies the identity of all three. Establishing that a particular operator K satisfies these last identities has become known as Kato's square root problem, or the Kato problem.

Kato's initial interest in these questions was motivated by problems of

¹⁹⁹¹ Mathematics Subject Classification: 35B45, 47B44, 47A57.