
Hokkaido Mathematical Joumal Vol. 26 (1997) p. 365-376

On Kato’s square root problem
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Abstract. We consider abstract versions,

H=- \sum_{i,j=1}^{n}A_{i}c_{ij}A_{j}+\sum_{i=1}^{n}(c_{i}A_{i}+A_{i}c_{i}’)+c_{0} ,

of second-0rder partial differential operators defined by sectorial forms on a Hilbert space
H . The A_{i} are closed skew-symmetric operators with a common dense domain H_{1} and
the c_{ij} , c_{i} etc. are bounded operators on H with the real part of the matrix C=(c_{ij})

strictly positive-definite.
We assume that D(L) \subseteq\bigcap_{i,j=1}^{n}D(A_{i}A_{j}) where L=- \sum_{i=1}^{n}A_{i}^{2} is defined as a form

on H_{1}\cross H_{1} . We further assume the c_{ij} are bounded operators on one of the Sobolev
spaces H_{\gamma}=D((I+L)^{\gamma/2}) , \gamma\in\langle 0,1\rangle , equipped with the graph norm. Then we prove
that

D((\lambda I+H)^{1/2})=D((\lambda I+H^{*})^{1/2})=?\{_{1} (1)

for all large \lambda\in R .
As a corollary we deduce that in any unitary representation of a Lie group all second-

order subelliptic operators in divergence form with H\"older continuous principal coefficients
satisfy (1).

Let K be a closed maximal accretive, regular accretive, sectorial opera-
tor on the Hilbert space H with associated regular sesquilinear form k and
Re K the closed maximal accretive operator associated with the real part of
k . Kato [Katl], Theorem 3.1, proved that D(K^{\delta})=D(K^{*\delta})=D(({\rm Re} K)^{\delta})

for all \delta\in[0,1/2\rangle but Lions [Lio] subsequently gave an example of a
closed maximal accretive operator for which D(K^{1/2})\neq D(K^{*1/2}) . Then
Kato [Kat2], Theorems 1 and 2, proved that D(K^{1/2})=D(K^{*1/2}) if, and
only if, both D(K^{1/2})\subseteq D(k) and D(K^{*1/2})\subseteq D(k) . More generally
D(K^{1/2})\subseteq D(k) if and only if D(k)\subseteq D(K^{*1/2}) with a similar equivalence
if K and K^{*} are interchanged. Therefore the identity of any two of the sets
D(K^{1/2}) , D(K^{*1/2}) , D(k) implies the identity of all three. Establishing that
a particular operator K satisfies these last identities has become known as
Kato’s square root problem, or the Kato problem.

Kato’s initial interest in these questions was motivated by problems of
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