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A remark on the action of PGL(2, q) and PSL(2, q)
on the projective line

(Dedicated to Professor Takeshi Kondo on his sixtieth birthday)

Shiro IWASAKI and Thomas MEIXNER
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Abstract. Let q be a prime power, K=GF(q) the finite field with q elements, \Omega=

K\cup\{\infty\} the project line over K . Let \lambda=PGL(2, q) and \prime J\backslash =PSL(2, q) be the linear
fractional group on \Omega and the special linear fractional group on \Omega , respectively. Let U be
any non-trivial subgroup of the (cyclic) multiplicative group K\backslash \{0\} and set E=U\cup\{\infty\} .
The main purpose of this note is to determine the structures of \lambda_{E} and ;Jc_{E} , the setwise
stabilizer of E in \star and /\rfloor\backslash , respectively. Then, as an application, by taking various q and
U , we obtain various 3-designs (\Omega, E^{\lambda}) and 3 (resp. 2)-designs (\Omega, E^{J|\backslash }) in case q\equiv-1 ,
(resp. q\equiv 1 ) (mod 4), which contain new designs.
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1. Introduction and notation

Throughout this note, we fix the following notation.

p : any prime number
q : a power of p
K:=GF(q) finite field with q elements
\Omega:=K\cup\{\infty\} projective line over K
F:=K\backslash \{0\} multiplicative group of K
\star^{1)}:=PGL(2, q)= \{x\mapsto(ax+b)/(cx+d)|a , b , c , d\in K ,

ad-bc\in F\}
/\rfloor\backslash ^{2)}:=PSL(2, q)= {x – (ax+b)/(cx+d)|a , b , c , d\in K ,

ad-bc\in F^{2}\}

m : a divisor of q-1 with m>1
U : a subgroup of order m of the (cyclic)

group F
E:=U\cup\{\infty\}
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1) ‘

\lambda’(dai) means ‘larg\’e.
2) ‘/\rfloor\backslash

’ (shou) means ‘small’.


