Currents invariant by a Kleinian group

Aziz EL KACIMI ALAOUI, Shigenori MATSUMOTO and Tarek MOUSSA (Received September 25, 1995)

Abstract. The goal of this paper is to give, under some hypotheses, a characterization of currents and distributions invariant by a group of diffeomorphisms of a manifold M and especially in the case of a Kleinian group Γ acting on the *n*-sphere \mathbf{S}^n .

Key words: current, distribution, Kleinian group, Poincaré exponent, bigraded cohomology.

0. Introduction

Let $p \in \mathbf{N}$ and $\Omega^p(M)$ be the space of differential forms of degree p with compact support in M equipped with its usual C^{∞} -topology. An element Tof the (topological) dual $\mathcal{C}_p(M)$ of $\Omega^p(M)$ is called a *current of degree* p and a *distribution* when p = 0. An element $T \in \mathcal{C}_p(M)$ is said to be *invariant* (or γ -*invariant*) under the action of a diffeomorphism $\gamma : M \longrightarrow M$ if it satisfies $\langle T, \gamma^* \varphi \rangle = \langle T, \varphi \rangle$ for every $\varphi \in \Omega^p(M)$ or if it vanishes on the space $K^p = \{\varphi - \gamma^* \varphi : \varphi \in \Omega^p(M)\}$. So the space $\mathcal{C}_p^{\Gamma}(M)$ (where Γ is the cyclic group generated by γ) of invariant currents on M is canonically isomorphic to the (topological) dual of the quotient $\Omega^p(M)/K^p$. More generally if Γ is a group of diffeomorphisms of M we say that $T \in \mathcal{C}_p(M)$ is Γ -*invariant* if it is invariant by every element $\gamma \in \Gamma$.

In [Ha], Haefliger characterized foliations with minimal leaves in terms of currents invariant by pseudogroups. Thus if the foliation is a suspension with holonomy group Γ , then the interest is focused upon Γ -invariant currents. The case of a Fuchsian group was studied in [HL]: let Γ be a subgroup of the diffeomorphism group Diff(\mathbf{S}^1) of the circle \mathbf{S}^1 whose elements are restriction of elements of a Fuchsian group G of diffeomorphisms of the unit disc \mathbf{D} . Suppose that the quotient Riemannian surface $S = G \setminus \mathbf{D}$ is of finite volume, of genus g and with k punctures. Then it was proved in [HL] that the space of Γ -invariant distributions on the circle \mathbf{S}^1 which vanish on constant functions is isomorphic to the space of harmonic forms on S having at most poles of order one at the punctures x_i . Its dimension

¹⁹⁹¹ Mathematics Subject Classification: 58A25, 57R30, 30F40.