Symmetry of isometric embeddings of Riemannian manifolds and local scalar invariants^{*}

Chong-Kyu HAN and Jae-Nyun Yoo

(Received April 26, 1995; Revised January 29, 1996)

Abstract. We study the infinitesimal symmetry of the isometric embeddings of a Riemannian manifold M^n into \mathbb{R}^{n+d} , $n \geq 2$, $d \geq 1$. Then we define a notion of scalar invariant for submanifolds in \mathbb{R}^{n+d} in terms of this symmetry. As an example, we show by calculation that the Gaussian curvature of a surface is an invariant.

Key words: isometric embedding, infinitesimal symmetry, scalar invariant, Killing field.

Introduction

Let M be a smooth (C^{∞}) manifold of dimension $n, n \geq 2$, with Riemannian metric g. A mapping $u = (u^1, \ldots, u^{n+d}) : M \to \mathbb{R}^{n+d}, d \geq 1$, is a local isometric embedding if u satisfies

$$\langle du, du \rangle = g.$$

In terms of local coordinates $x = (x^1, \ldots, x^n)$ of M, the above equation is written as

$$\sum_{\alpha=1}^{n+d} \frac{\partial u^{\alpha}}{\partial x^{i}} \frac{\partial u^{\alpha}}{\partial x^{j}} = g_{ij}, \quad \text{for each} \quad i, j = 1, \dots, n,$$
(2.5)

where $g_{ij} = g(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}).$

A (local) scalar invariant of M is a real valued function defined on an open subset of M which is invariant under local isometries. The scalar curvature is the simplest scalar invariant. If $\operatorname{vol}_M(p, r)$ is the volume of the geodesic ball of radius r centered at a point $p \in M$, then for sufficiently small $r \geq 0$

$$\frac{\operatorname{vol}_M(p,r)}{\operatorname{vol}_{\mathbb{R}^n}(0,r)} = 1 - c\kappa_2(p)r^2 + \sum_{n \ge 4} \kappa_n(p)r^n,$$

¹⁹⁹¹ Mathematics Subject Classification: 53A55, 58A20, 58G35.

^{*}The first author was partially supported by Korea Research Foundation's program at POSTECH and both authors were partially supported by GARC-KOSEF.