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Axisymmetric solutions and singular parabolic equations
in the theory of viscosity solutions
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Abstract. We extend the theory of viscosity solutions for singular parabolic equations
including, for example, axisymmetrized level set equation for mean curvature flow equa-
tion. We establish a comparison principle for viscosity solutions of singular degenerate
parabolic equations including such an equation. We discuss the relation between axisym-
metric viscosity solutions of original level set equation for mean curvature flow equation
and the viscosity solution of axisymmetrized one.
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1. Introduction

We are concerned with a degenerate parabolic equation of form:

u_{t}+F_{0}( \nabla_{x,r}u, \nabla_{x,r}^{2}u)-\frac{l/u_{r}}{r^{\beta}}=0 in Q=(0, T)\cross\Omega\cross(0, R) , (1.1)

-u_{r}=0 on S=(0, T)\cross\Omega\cross\{0\} , (1.2)

where \Omega is a domain in R^{m} , T , R and \nu are positive numbers and \beta is
a positive parameter. Here u_{t}=\partial u/\partial t , \nabla_{x}u and u_{r}=\partial u/\partial r denote the
time derivative of u , the gradient of u in space variables x and the space
derivative of u in r , respectively. We denote by \nabla_{x,r}u=(\nabla_{x}u, u_{r}) and \nabla_{x,r}^{2}u

the gradient of u and the Hessian of u in space variables (x, r) , respectively.
The function F_{0}=F_{0}(p, X) is not continuous on p=0. As explained later
in section 3, the equation (1.1) has many examples. One of them is of the
form:

u_{t}-| \nabla_{x,r}u|div_{x,r}(\frac{\nabla_{x,r}u}{|\nabla_{x,r}u|})-\frac{n-m-1}{r}u_{r}=0 (1.3)

which is introduced as axisymmetrized level set equation for mean curvature
flow equation, where for C^{1} function f_{i} : Qarrow R (i=1, . . , m+1) the
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