Biharmonic green domains in \mathbb{R}^n

Victor ANANDAM and Moustafa DAMLAKHI

(Received September 17, 1997)

Abstract. The properties of biharmonic functions with a singularity at a finite or infinite point in \mathbb{R}^n , $n \geq 2$, are investigated, leading to a generalization of the classical Bôcher theorem for harmonic functions with positive singularity, when $2 \leq n \leq 4$. This latter result is useful in identifying some biharmonic Green domains in \mathbb{R}^n .

Key words: biharmonic point singularities in \mathbf{R}^n .

1. Introduction

The behaviour of a biharmonic function u(x) in 0 < |x| < 1 in \mathbb{R}^n , $n \ge 2$, is considered, leading to a necessary and sufficient condition for u to extend as a distribution in |x| < 1; a case of particular interest is when u is bounded.

The corresponding results when the biharmonic function is defined outside a compact set K in \mathbb{R}^n lead to an analogue of Bôcher's theorem (after a Kelvin transformation) for positive harmonic functions in $\mathbb{R}^n \setminus K$; but this is valid only when $2 \le n \le 4$. A corollary to this is: let Ω be a domain in \mathbb{R}^n , $2 \le n \le 4$ such that $\mathbb{R}^n \setminus \Omega$ is compact. Then Ω is not a biharmonic Green domain; that is, a biharmonic Green function cannot be defined on Ω .

2. Preliminaries

For $n \geq 2$, let E_n and S_n denote the fundamental solutions of the Laplacian Δ and Δ^2 in \mathbb{R}^n ; that is, $\Delta E_n = \delta$ and $\Delta^2 S_n = \delta$ in the sense of distributions.

Given a locally integrable function f on \mathbb{R}^n , let M(r, f) denote the mean value of f(x) on |x| = r.

Proposition 2.1 Let u(x) be a harmonic function in 0 < |x| < 1 in \mathbb{R}^n . Then the following are equivalent:

1) u extends as a distribution in |x| < 1 (in which case, it is of order

¹⁹⁹¹ Mathematics Subject Classification : 31B30.