A note on the Poincaré polynomial of an arrangement

Stephen SzydLIK

(Received September 13, 1996; Revised February 4, 1997)

Abstract

Let $V=\mathbb{K}^{\ell}$ be a vector space, where $\mathbb{K}=\mathbb{R}$ or \mathbb{C}. A hyperplane in V is an affine subspace of dimension $\ell-1$. An arrangement \mathcal{A} is a finite set of hyperplanes in V. Let $L=L(\mathcal{A})$ be the set of intersections of the hyperplanes of \mathcal{A}, partially ordered by reverse inclusion. Let μ be the Möbius function on L, and define a rank function on L by $r(X)=\ell-\operatorname{dim} X$. The Poincaré polynomial on \mathcal{A} is given by

$$
\pi(\mathcal{A}, t)=\sum_{X \in L} \mu(X)(-t)^{r(X)}
$$

For $X \in L$, define the combinatorial sum

$$
p(X)=(-1)^{r(X)} \sum_{X \leq Z} \mu(Z) r(Z)
$$

Both the Poincaré polynomial and the quantity $p(X)$ have physical interpretations in certain cases (see the work of Zaslavsky and Varchenko, respectively).

In this paper, we prove an identity involving the Poincaré polynomial and $p(X)$ and show two applications which have connections to the work of Varchenko. The first is a chamber-counting result with an interpretation when $\mathbb{K}=\mathbb{R}$, the second a result related to the Euler beta function, defined by Varchenko when $\mathbb{K}=\mathbb{C}$.

Key words: arrangement, hyperplane, Poincaré polynomial.

1. Introduction

Let \mathbb{K} be a field, and let V be a vector space over \mathbb{K} of dimension ℓ. A hyperplane H in V is an affine subspace of dimension $(\ell-1)$. An arrangement \mathcal{A} is a finite set of hyperplanes in V. When we wish to emphasize the dimension of V, we call \mathcal{A} an ℓ-arrangement. When we wish to emphasize the vector space itself, we write (\mathcal{A}, V) to denote the arrangement.

We refer to [3] for terminology and basic results. Let $L=L(\mathcal{A})$ be the set of intersections of the hyperplanes of \mathcal{A}, partially ordered by reverse inclusion. We may define a rank function on the elements (edges) of L by $r(X)=\operatorname{codim} X=\ell-\operatorname{dim} X$. We may also define a meet and a join operation on $L(\mathcal{A})$ which give it the properties of a geometric poset.

