Morita-Mumford classes on finite cyclic subgroups of the mapping class group of closed surfaces

Takeshi UEMURA

(Received November 25, 1998)

Abstract. Let G be a finite cyclic subgroup of the mapping class group of order m. We prove the Morita-Mumford classes restricted to G admit a certain kind of periodicity whose period is given by the Euler function $\phi(m)$. Using this periodicity theorem, we compute the Morita-Mumford classes on arbitrary finite cyclic subgroups of the automorphism group of Klein's quartic curve.

Key words: Morita-Mumford class, mapping class group, Klein curve.

Introduction

Let Σ_g be a closed oriented surface of genus $g \geq 2$, and M_g the mapping class group of Σ_g , which is the group of isotopy classes of orientation preserving diffeomorphisms of Σ_g . The cohomological study of M_g has been developed rapidly and has yielded many interesting results. The Morita-Mumford classes, defined by Morita [Mo1] and Mumford [Mu] independently, are a series of cohomology classes of M_g , whose zeroth term is equal to the Euler number 2 - 2g of Σ_g . Many mathematicians, including Harer [H2] [H3], Miller [Mi], and Morita [Mo1] [Mo2] [Mo3] [Mo4], have pointed out the importance of these classes for the study of the stable cohomology ring of M_g . Moreover, recently it is revealed by Akita that the Morita-Mumford classes play an important role in the study of the η -invariant of mapping tori of periodic mapping classes (see [Ak]). We are convinced that the Morita-Mumford classes contribute largely to the unstable cohomological study of M_g in the future.

The Morita-Mumford classes of surface bundles are defined as follows. Let $\pi : E \to B$ be an oriented fiber bundle whose fiber is Σ_g . (We call such a bundle a "surface bundle") The relative tangent bundle $T_{E/B}$ is the oriented real 2-dimensional vector bundle over E consisting of all the tangent vectors along the fibers. Take its Euler class $e := e(T_{E/B}) \in H^2(E; \mathbb{Z})$, then $e^{n+1} \in H^{2(n+1)}(E; \mathbb{Z})$. Let $\pi_! : H^n(E; \mathbb{Z}) \to H^{n-2}(B; \mathbb{Z})$ be the

¹⁹⁹¹ Mathematics Subject Classification : Primary 57R20; Secondary 14H45.