Some operators on Lorentz spaces

Enji Sato

(Received March 30, 1998)

Abstract. It is shown that the spaces A(p,q) and M(p,q) defined by Chen and Lai [1] coincide for $1 and <math>1 < q < \infty$. Also the Banach algebraic properties of Lorentz-improving operators are investigated.

Key words: Lorentz space, Fourier-Stietjes transform, operating function.

1. Introduction

Let G be a locally compact abelian group (LCA group), dx = dm the Haar measure of G, and Γ the dual group. Also the space of bounded regular Borel measures on G will be denoted by M(G), and $L^p(G)$ the L^p space with the norm $\|\cdot\|_p$ on G.

In this paper, we study the properties of some bounded linear operators on Lorentz spaces L(p,q) (= L(p,q)(G)) ($1 \le p, q \le \infty$).

First we recall some definitions and basic properties of Lorentz spaces.

Definition 1.1 Let f be a complex-valued measurable function on G which is finite m a.e. The distribution function of f is defined by

$$m_f(y) = m\{x \in G \mid |f(x)| > y\} \quad (y \ge 0).$$

The non-increasing rearrangement of f is the function f^* defined by

$$f^*(t) = \inf\{y > 0 \mid m_f(y) \le t\} \quad (t \ge 0).$$

The Lorentz space L(p,q) is defined as the set of equivalence classes of functions f as above such that $||f||_{pq}^* < \infty$, where

$$\|f\|_{pq}^{*} = \begin{cases} \left(\frac{q}{p} \int_{0}^{\infty} (t^{1/p} f^{*}(t))^{q} \frac{dt}{t}\right)^{1/q} & \text{if } 1 \le p, \ q < \infty \\\\ \sup_{t \in (0,\infty)} t^{1/p} f^{*}(t) & \text{if } 1 \le p \le \infty, \ q = \infty. \end{cases}$$

Since f^* and f have the same distribution function, it follows that

¹⁹⁹¹ Mathematics Subject Classification: 43A22, 43A25.