A singular integral operator related to block spaces

AbdelNaser J. AL-HASAN^{*} and Dashan FAN

(Received November 10, 1997; Revised July 3, 1998)

Abstract. Let h(t) be an L^{∞} function on $(0, \infty)$, $\Omega(y')$ be a $B_q^{0,0}$ function on the unit sphere satisfying the mean zero property (1.1) and $P_N(t)$ be a real polynomial on **R** of degree N satisfying $P_N(0) = 0$. We prove that the singular integral operator

$$\left(T_{P_N,h}f\right)(x) = p.v.\int_{\mathbf{R}^n} h(|y|)\Omega(y')|y|^{-n}f(x-P_N(|y|)y')dy$$

is bounded in $L^p(\mathbf{R}^n)$ for $1 , and the bound is independent of the coefficients of <math>P_N(t)$.

Key words: singular integral, rough kernel, block spaces.

1. Introduction

Let \mathbf{R}^n , $n \ge 2$, be the *n*-dimensional Euclidean space and \mathbf{S}^{n-1} be the unit sphere in \mathbf{R}^n equipped with the normalized Lebesque measure $d\sigma = d\sigma(x')$. Let $\Omega(x)$ be a homogenous function of degree zero, with $\Omega \in L^1(S^{n-1})$ and

$$\int\limits_{\mathbf{S}^{n-1}} \Omega(x') d\sigma(x') = 0, \tag{1.1}$$

where $x' = \frac{x}{|x|}$ for any $x \neq 0$.

Suppose that $h(t) \in L^{\infty}(0, \infty)$. Let $P_N(t)$ be a polynomial of degree N satisfying $P_N(0) = 0$.

The singular integral operator $T_{P_N,h}f$ is defined by

$$\left(T_{P_N,h}f
ight)(x)=p.v.\int\limits_{\mathbf{R}^n}K(y)f(x-P_N(|y|)y')dy$$

where $y' = \frac{y}{|y|} \in \mathbf{S}^{n-1}$, $K(y) = h(|y|)\Omega(y')|y|^{-n}$ and $f \in S(\mathbb{R}^n)$.

We denote $T_{P_N,h}$ by $T_{I,h}$ if $P_N(t) = t$; and we denote $T_{P_N,h}$ by T_I if $P_N(t) = t$ and $h(t) \equiv 1$.

¹⁹⁹¹ Mathematics Subject Classification: 42B20.

^{*}Supported in part by a GAANN grant #P200A70522.