On stability of periodic solutions of the Navier-Stokes equations in unbounded domains

Yasushi Taniuchi

(Received February 3, 1998)

Abstract. We consider the stability of periodic solutions of the Navier-Stokes equations in unbounded domains $\Omega \subset \mathbf{R}^n$ $(n \geq 3)$, which belong to $BC(\mathbf{R}; L^{m_1} \cap L^{m_2})$ for some $n/2 < m_1 < n < m_2$. We show that if the periodic solution w is small in $L^{\infty}(0, \infty; L^{m_1} \cap L^{m_2})$ for some $m_1 < n < m_2$ and if the initial disturbance a is small in $L^n(\Omega)$, then w is stable.

Key words: Navier-Stokes equations, unbounded domains, stability, periodic solutions.

1. Introduction

Let Ω be an exterior domain in \mathbf{R}^n $(n \geq 4)$, i.e., a domain having a compact complement $\mathbf{R}^n \setminus \Omega$, the half space \mathbf{R}^n_+ $(n \geq 3)$, or the whole space \mathbf{R}^n $(n \geq 3)$ and assume that the boundary $\partial \Omega$ is of class $C^{2+\mu}(0 < \mu < 1)$. The motion of the incompressible fluid occupying Ω is governed by the Navier-Stokes equations:

$$(N-S) \quad \left\{ egin{array}{ll} rac{\partial w}{\partial t} - \Delta w + w \cdot
abla w +
abla \pi = f, & \operatorname{div} w = 0 & x \in \Omega, \ t \in oldsymbol{R}, \ w = 0 & \operatorname{on} & \partial \Omega, & w(x,t)
ightarrow 0 & \operatorname{as} \ |x|
ightarrow \infty, \end{array}
ight.$$

where $w = w(x,t) = (w^1(x,t), \ldots, w^n(x,t))$ and $\pi = \pi(x,t)$ denote the unknown velocity vector and the unknown pressure of the fluid, respectively, while $f = f(x,t) = (f^1(x,t), \ldots, f^n(x,t))$ is the given external force. In [13], Kozono-Nakao constructed periodic strong solutions in unbounded domains for some periodic external force f. Their solutions belong to $BC(\mathbf{R}; L^r \cap L^\infty)$ for some n/2 < r < n.

The purpose of the present paper is to show the *stability* of such solutions. If w(x,0) is initially perturbed by a, then the perturbed flow v(x,t) is governed by the following Navier-Stokes equations: