Strong almost convergence and almost λ -statistical convergence

Ekrem SAVAŞ

(Received July 21, 1999; Revised November 8, 1999)

Abstract. The purpose of this paper is to define almost λ -statistical convergence by using the notion of (V, λ) -summability to generalize the concept of statistical convergence.

Key words: statistical convergence, almost statistical convergence, almost λ -statistical convergence, strongly almost convergence.

1. Introduction

Let s be the set of all real or complex sequences and let l_{∞} , c and c_0 denote the Banach spaces of bounded, convergent and null sequences $x = (x_k)$, respectively normed as usual by $||x|| = \sup_k |x_k|$. Let D be the shift operator on s, that is $D((x_k)) = (x_{k+1})$. It may be recalled that Banach limit L (Banach [1]) is a linear functional on l_{∞} such that

- (i) $L(x) \ge 0$ if $x_k \ge 0, k \ge 0$,
- (ii) L(Dx) = L(x) for all $x \in l_{\infty}$
- (iii) L(e) = 1 where e = (1, 1, 1, ...).

A sequence $x \in l_{\infty}$ is said to be almost convergent (Lorentz [13]) if all Banach limits of x coincide. Let \hat{c} and \hat{c}_0 denote the sets of all sequences which are almost convergent and almost convergent to zero. Lorentz [13] proved that,

$$\hat{c} = \left\{ x : \lim_{n} \frac{1}{n} \sum_{k=1}^{n} x_{k+m} \text{ exists uniformly in } m \right\}$$

Several authors including Lorentz [13], Duran [4] and King [10] have studied almost convergent sequences.

A sequence $x = (x_k)$ is said to be summable (C, 1) if and only if

$$\lim_{n} \frac{1}{n} \sum_{k=1}^{n} x_k \text{ exists}$$

1991 Mathematics Subject Classification: 40A05, 40C05.