If $S \times T$ is semiperfect, is S or T perfect?

Torben Maack BISGAARD

(Received June 14, 1999; Revised September 1, 1999)

Abstract. The product of a perfect and a semiperfect semigroup is semiperfect. Conversely, if S and T are semigroups such that $S \times T$ is semiperfect then S and T must both be semiperfect. We consider the question whether it follows that S or T is perfect. This question can be answered in the affirmative by showing that every non-perfect semiperfect semigroup admits Z or N_0 as a minor. We show that the study of the latter question can be reduced to the case of subsemigroups of a rational vector space carrying the identical involution.

Key words: semigroup, positive definite, moment function.

1. Introduction

Suppose (S, +, *) is an abelian semigroup with zero and involution. Such a structure will be called a *-semigroup, abbreviated 'semigroup' when confusion is unlikely. A function $\varphi: S \to \mathbf{C}$ is positive definite if

$$\sum_{j,k=1}^n c_j \overline{c_k} \varphi(s_j + s_k^*) \ge 0$$

for every choice of $n \in \mathbb{N}$, $s_1, \ldots, s_n \in S$, and $c_1, \ldots, c_n \in \mathbb{C}$. Denote by $\mathcal{P}(S)$ the set of all positive definite functions on S.

A character on S is a function $\sigma: S \to \mathbf{C}$ satisfying $\sigma(0) = 1$, $\sigma(s^*) = \overline{\sigma(s)}$, and $\sigma(s+t) = \sigma(s)\sigma(t)$ for all $s, t \in S$. Denote by S^* the set of all characters on S. Denote by $\mathcal{A}(S^*)$ the least σ -field of subsets of S^* rendering the mapping $\sigma \mapsto \sigma(s): S^* \to \mathbf{C}$ measurable for each $s \in S$. Denote by $F_+(S^*)$ the set of all measures defined on $\mathcal{A}(S^*)$ and integrating $\sigma \mapsto \sigma(s)$ for all $s \in S$. For $\mu \in F_+(S^*)$, define $\mathcal{L}\mu: S \to \mathbf{C}$ by

$$\mathcal{L}\mu(s) = \int_{S^*} \sigma(s) \, d\mu(\sigma)$$

for $s \in S$. A function $\varphi: S \to \mathbf{C}$ is a moment function if $\varphi = \mathcal{L}\mu$ for some $\mu \in F_+(S^*)$, and a moment function φ is determinate if there is only one

¹⁹⁹¹ Mathematics Subject Classification : Primary 43A35, 44A60.