On the Schur indices of the irreducible characters of SL(n,q)

Zyozyu Ohmori

(Received May 12, 1999)

Abstract. We shall give some sufficient conditions subject for that the Schur indices of irreducible characters of the special linear groups over finite fields are equal to one.

Key words: special linear groups, irreducible characters, Schur index.

Introduction

Let S denote the special linear group SL(n,q) of degree $n \geq 2$ over a finite field \mathbb{F}_q with q elements of characteristic p. If χ is a complex irreducible character of a finite group and K is a field of characteristic 0, then $m_K(\chi)$ denotes the Schur index of χ with respect to K, where we consider χ as a character over some algebraically closed extension of K. Then the following results are known:

Theorem A (R. Gow [3]) For any (complex) irreducible character χ of S, we have $m_{\mathbb{Q}}(\chi) \leq 2$.

Theorem B (A.V. Zelevinsky [15]) Assume that p = 2. Then, for any irreducible character χ of S, $m_{\mathbb{Q}}(\chi) = 1$.

Theorem C (Z. Ohmori [9]) Assume that $p \neq 2$ and n is odd. Then, for any irreducible character χ of S, $m_{\mathbb{Q}}(\chi) = 1$.

Theorem D (Gow [3]) Assume that $p \neq 2$, n is even, and $\operatorname{ord}_2 n > \operatorname{ord}_2(p-1)$. Then, for any irreducible character χ of S, $m_{\mathbb{Q}}(\chi) = 1$.

Theorem E (Gow [3]) Assume that $p \neq 2$, n is even, $\operatorname{ord}_2 n \leq \operatorname{ord}_2(p-1)$, and q is an even power of p. Let χ be any irreducible character of S. Then, if $\chi(-1_n) = \chi(1_n)$, we have $m_{\mathbb{Q}}(\chi) = 1$. If $\chi(-1_n) = -\chi(1_n)$, then, for any prime number $r \neq p$, we have $m_{\mathbb{Q}_r}(\chi) = 1$.

Theorem F (Gow [3]) Assume that $p \neq 2$ and n = 4m for some positive

¹⁹⁹¹ Mathematics Subject Classification: 20G05.