Putnam's theorems for \boldsymbol{w}-hyponormal operators

Ariyadasa Aluthge and Derming Wang

(Received May 26, 1999)

Abstract

Three theorems on hyponormal operators due to Putnam are generalized to apply to the broader class of w-hyponormal operators. In particular, it is shown that if an operator T is w-hyponormal and the spectrum of $\left|T^{*}\right|$ is not an interval, then T has a nontrivial invariant subspace.

Key words: p-, log- and w-hyponormal operators, approximate point spectrum, invariant subspace.

1. Introduction

Let T be a bounded linear operator on a Hilbert space H with inner product (\cdot, \cdot) and $p>0$. The operator T is said to be p-hyponormal if $\left(T^{*} T\right)^{p} \geq\left(T T^{*}\right)^{p}$. A p-hyponormal operator is said to be hyponormal if $p=1$, semi-hyponormal if $p=1 / 2$. It is a consequence of the well-known Löwner-Heinz inequality that if T is p-hyponormal, then it is q-hyponormal for any $0<q \leq p$. An invertible operator T is said to be log-hyponormal if $\log |T| \geq \log \left|T^{*}\right|$. Clearly, every invertible p-hyponormal operator is loghyponormal. Let $T=U|T|$ be the polar decomposition of the operator T. Following [1], we define $\widetilde{T}=|T|^{1 / 2} U|T|^{1 / 2}$. An operator T is said to be w-hyponormal if

$$
\begin{equation*}
|\widetilde{T}| \geq|T| \geq\left|\widetilde{T}^{*}\right| \tag{1.1}
\end{equation*}
$$

Inequalities (1.1) show that if T is w-hyponormal, then \widetilde{T} is semi-hyponormal. The classes of log- and w-hyponormal operators were introduced and their spectral properties studied in [2]. It was shown in [2] and [3] that the class of w-hyponormal operators contains both the p - and loghyponormal operators. Log-hyponormal operators were independently introduced by Tanahashi in the paper [8]. There he gave an example of a \log-hyponormal operator which is not p-hyponormal for any $p>0$. Thus, neither the class of p-hyponormal operators nor the class of log-hyponormal operators contains the other. In [4], we pointed out that if T is the

[^0]
[^0]: 1991 Mathematics Subject Classification : 47B20, 47A10, 47A15.

