# Solvability of convolution equations in $\mathcal{D}_{L^{p}}^{\prime}$ 

Saleh Abdullah*<br>(Received December 25, 1998; Revised July 12, 1999)


#### Abstract

In this paper we give a necessary condition on the Fourier transform of a convolution operator $S$ of the space $\mathcal{D}_{L^{p}}^{\prime} ; 2 \leq p<\infty$, for the equation $S * u=v$ to have a solution $u$ in $\mathcal{D}_{L^{p}}^{\prime}$ for every $v$ in $\mathcal{D}_{L^{p}}^{\prime}$. In the case $p=2$, this condition with the additional assumption $\widehat{S}(\xi) \neq 0$ for all $\xi \in \Re^{n}$, are sufficient for solvability of the convolution equation.


Key words: distributions of $L^{p}$-growth, convolution equations.

## 1. Introduction

Convolution equations in spaces of distributions and ultradistributions of $L^{p}$-growth were studied by several authors. In this work we study the problem of characterizing the convolution operators $S$ for which the convolution equation $S * u=v$ have a solution $u$ in $\mathcal{D}_{L^{p}}^{\prime}$ for every $v$ in $\mathcal{D}_{L^{p}}^{\prime}$. Pahk [3] characterized hypoelliptic convolution operators in the space $\mathcal{D}_{L^{\infty}}^{\prime}$, and left the problem of solvability of convolution equations in $\mathcal{D}_{L^{p}}^{\prime}, 1 \leq p \leq \infty$ open. Pilipovič [4] has established necessary condition and sufficient condition on the convolution operator $S$ to be invertible in $\mathcal{D}_{L^{2}}^{\left(\mathcal{M}_{p}\right)}$. Moreover, Pilipovič characterized hypoelliptic convolution operators in $\mathcal{D}_{L^{2}}^{\prime\left(M_{p}\right)}$. Here we give a necessary condition on $\widehat{S}$, the Fourier transform of the convolution operator $S$, for the convolution equation $S * u=v$ to have a solution $u$ in $\mathcal{D}_{L^{p}}^{\prime}$ for a given $v$ in $\mathcal{D}_{L^{p}}^{\prime}$. Moreover, in the case $p=2$ we give sufficient conditions for solvability of the equation $S * u=v$. Characterizing invertible and hypoelliptic convolution operators in $\mathcal{D}_{L^{p}}^{\prime}$ is difficult in general. This is due to lack of differentiability of $\widehat{S}$. It is known (see [1] part (c) of Theorem 2 and the remark which follows it on page 202) that the Fourier transform of any convolution operator in $\mathcal{D}_{L^{p}}^{\prime}, 1 \leq p \leq \infty$, is a continuous function which is slowly increasing at infinity. We remark that in this work

[^0]
[^0]:    1991 Mathematics Subject Classification : Primary 46F10.
    *This work was done while the author was on leave from Jordan University of Science \& Technology.

