Solvability of convolution equations in \mathcal{D}'_{L^p}

Saleh ABDULLAH*

(Received December 25, 1998; Revised July 12, 1999)

Abstract. In this paper we give a necessary condition on the Fourier transform of a convolution operator S of the space \mathcal{D}'_{L^p} ; $2 \leq p < \infty$, for the equation S * u = v to have a solution u in \mathcal{D}'_{L^p} for every v in \mathcal{D}'_{L^p} . In the case p = 2, this condition with the additional assumption $\widehat{S}(\xi) \neq 0$ for all $\xi \in \Re^n$, are sufficient for solvability of the convolution equation.

Key words: distributions of L^p -growth, convolution equations.

1. Introduction

Convolution equations in spaces of distributions and ultradistributions of L^p -growth were studied by several authors. In this work we study the problem of characterizing the convolution operators S for which the convolution equation S * u = v have a solution u in \mathcal{D}'_{L^p} for every v in \mathcal{D}'_{L^p} . Pahk [3] characterized hypoelliptic convolution operators in the space $\mathcal{D}'_{L^{\infty}}$, and left the problem of solvability of convolution equations in $\mathcal{D}'_{L^p}, 1 \leq p \leq \infty$ open. Pilipovič [4] has established necessary condition and sufficient condition on the convolution operator S to be invertible in $\mathcal{D}_{L^2}^{(M_p)}$. Moreover, Pilipovič characterized hypoelliptic convolution operators in $\mathcal{D}_{L^2}^{\prime(M_p)}$. Here we give a necessary condition on \widehat{S} , the Fourier transform of the convolution operator S, for the convolution equation S * u = v to have a solution u in \mathcal{D}'_{L^p} for a given v in \mathcal{D}'_{L^p} . Moreover, in the case p = 2 we give sufficient conditions for solvability of the equation S * u = v. Characterizing invertible and hypoelliptic convolution operators in \mathcal{D}'_{L^p} is difficult in general. This is due to lack of differentiability of \widehat{S} . It is known (see [1] part (c) of Theorem 2 and the remark which follows it on page 202) that the Fourier transform of any convolution operator in $\mathcal{D}'_{L^p}, 1 \leq p \leq \infty$, is a continuous function which is slowly increasing at infinity. We remark that in this work

¹⁹⁹¹ Mathematics Subject Classification : Primary 46F10.

^{*}This work was done while the author was on leave from Jordan University of Science & Technology.