Oscillations of delay difference equations

X.H. TANG and J.S. YU (Received April 16, 1999)

Abstract. We obtain some new sufficient conditions for oscillations of all solutions of the delay difference equation

$$y_{n+1} - y_n + p_n y_{n-k} = 0, \quad n = 0, 1, 2, \dots$$

where $\{p_n\}$ is a sequence of nonnegative numbers and k is a positive integer. Our theorems improve several previous well-known results. Some examples are given to demonstrate the advantage of our results.

Key words: oscillation, eventually positive solution, difference equation.

1. Introduction

In the recent papers [1–12], the oscillation of all solutions of the delay difference equation

$$y_{n+1} - y_n + p_n y_{n-k} = 0, \quad n = 0, 1, 2, \dots$$
 (1)

has been investigated, where $\{p_n\}$ is a sequence of nonnegative numbers and k is a positive integer.

A solution $\{y_n\}$ of Eq.(1) is said to be oscillatory if the terms y_n of the sequence are not eventually positive or eventually negative. Otherwise, the solution is called nonoscillatory.

In [1], Erbe and Zhang first proved that all solutions of (1) oscillate if

$$\liminf_{n \to \infty} p_n > \frac{k^k}{(k+1)^{k+1}},$$
(2)

or

$$\Lambda = \limsup_{n \to \infty} \sum_{i=n-k}^{n} p_i > 1. \tag{3}$$

¹⁹⁹¹ Mathematics Subject Classification: 39A10.

This work was supported by the grant for Ph.D. of National Educational Committee of China.