Note on MDS codes over the integers modulo p^m

Keisuke Shiromoto

(Received January 22, 1999; Revised March 5, 1999)

Abstract. Recently, a number of papers have been published dealing with codes over finite rings. In this paper, we consider maximum distance separable (MDS) codes over the integers modulo p^m , where p is a prime number.

Key words: linear codes over rings, MDS code, module, Singleton bound, Hamming weight, generator matrix.

1. Introduction

In [4], Forney introduced a Singleton bound for codes over any finite alphabet A as follows;

 $d(C) \le n - k + 1,$

where C is a code of length n over A, $k = \log_{|A|} |C|$ and d(C) is the minimum distance of C and proved several nonexistence results for MDS group codes over finite groups with respect to the above bound, that is, the group codes with d(C) = n - k + 1. Zain and Rajan [9] also proved that for a group code C over a cyclic group of m elements with generator matrix of the form $(I_k | M)$, where M is a $k \times (n - k)$ matrix over \mathbb{Z}_m , C is MDS iff the determinant of every $h \times h$ submatrix, $h = 1, 2, \ldots, \min\{n - k, k\}$, of M is a unit in \mathbb{Z}_m . Moreover, Dong, Soh and Gunawan [3] proved a similar matrix characterization of MDS (free) codes with parity check matrices of the form $(-M | I_{n-k})$ over modules.

Recently, Shiromoto and Yoshida [8] introduced a Singleton bound for linear codes over \mathbb{Z}_k as follows:

Proposition 1 (Shiromoto and Yoshida [8]) Let C be a linear code of length n over \mathbb{Z}_k with the minimum weight d(C). Then,

 $d(C) \le n - \operatorname{rank}(C) + 1.$

In the next section, we shall introduce some definitions and notations

¹⁹⁹¹ Mathematics Subject Classification: 94B05, 94B60, 94B65.