Existence of $\delta_{\boldsymbol{m}}$-periodic points for smooth maps of compact manifold*

Grzegorz Graff
(Received September 9, 1998; Revised January 6, 1999)

Abstract

For a smooth self-map f of a compact manifold M we examine the connection between topological conditions put on M and differentials of a map f at periodic points.

Key words: periodic points, Lefschetz number, cohomological algebra.

1. Introduction

A classical example of the connection between global and local properties of a compact manifold M is Poincaré theorem: $\sum_{x \in C} \operatorname{ind}(T, x)=\chi(M)$, where $\chi(M)$ denotes the Euler characteristic of M, C is the set of critical points of the vector field T, and $\operatorname{ind}(T, x)$ the local index of T.

In 1983 Chow, Mallet-Paret and Yorke ([CMY]) proved that the sequence $\operatorname{ind}\left(f^{n}, x_{0}\right)$ of isolated fixed point indices of iterated C^{1}-map f is an integral linear combination of elementary periodic sequences with the periods determined by the spectrum of the derivative $D f\left(x_{0}\right)$ of f at x_{0}.

Basing on this fact Matsuoka and Shiraki ([MS]) formulated for selfmaps of a compact manifold M with finitely many periodic points a global homological condition on M that forces an existence of a periodic point (so called a δ_{m}-periodic point) which satisfies a certain degeneracy condition.

On the other hand Marzantowicz and Przygodzki ([MP]) expressed a formula for $i_{m}(f)=\sum_{k \mid m} \mu(k) I\left(f^{m / k}\right)$, where $I(f)$ is the fixed point index of f, in terms of periodic points of a compact manifold. If $i_{m}(f) \neq 0$ then we say that m is an algebraic period of f.

The aim of this paper is to prove the theorem analogous to given in [MS] but formulated in the language of algebraic periods. This approach is more general: we show that both theorems are equivalent for the class of maps with finitely many periodic points, but by a use of algebraic periods it

[^0]
[^0]: 1991 Mathematics Subject Classification : Primary 58F20, 55M20; Secondary 58F08.
 *Research supported by KBN grant No. 2 PO3A 033 15. This work was partially done at the Intitute of Mathematics of Polish Academy of Sciences.

