Weighted sharing and a result of Ozawa

Indrajit LAHIRI

(Received July 19, 2000; Revised October 13, 2000)

Abstract. We prove a uniqueness theorem for meromorphic functions sharing three values with unit weight which improves a result of Ozawa.

Key words: weigted sharing, uniqueness, meromorphic function.

1. Introduction, Definitions and Results

Let f and g be two nonconstant meromorphic functions defined in the open complex plane C. If for some $a \in C \cup \{\infty\}$ the zeros of f - a and g - a coincide in locations and multiplicities we say that f and g share the value a CM (counting multiplicities) and if coincide in locations only we say that f and g share a IM (ignoring multiplicities).

We do not explain the standard notations and definitions of the value distribution theory as these are available in [2]. However, we explain some notations and definitions which will be needed in the sequel. Throughout the paper we denote by f and g two nonconstant meromorphic functions defined on C unless otherwise stated.

Definition 1 [4] We denote by $N(r, a; f \mid = 1)$ the counting function of simple *a*-points of *f*.

Definition 2 [4] We denote by $\overline{N}(r, a; f \mid \geq 2)$ the counting function of multiple *a*-points of *f*, where each *a*-point is counted only once.

Definition 3 [10] We define $\delta_2(a; f) = 1 - \limsup_{r \to \infty} \frac{N_2(r, a; f)}{T(r, f)}$, where $N_2(r, a; f) = \overline{N}(r, a; f) + \overline{N}(r, a; f \mid \geq 2)$.

Clearly $0 \le \delta(a; f) \le \delta_2(a; f) \le \Theta(a; f) \le 1$.

In order to investigate the influence of the distribution of zeros on the uniqueness of entire functions M. Ozawa [5] proved the following theorem.

²⁰⁰⁰ Mathematics Subject Classification : 30D35.