A note on solvability of factorizable finite groups

Angel CAROCCA

(Received August 28, 2000; Revised February 14, 2001)

Abstract. Using theorems on the classification of finite simple groups, we give an extension of some results on the solvability of factorizable finite groups that are generalizations of a well known theorem due to O. Kegel and H. Wielandt.

Key words: factorizable groups, 2-decomposable and 2-nilpotent subgroups.

1. Introduction

Groups that can be written as a product G = HK of two of its subgroups H and K have been studied by many authors. Based on Kegel-Wielandt's theorem [6, Satz 4.3, p.674], which states that a finite group is solvable if it is the product of two nilpotent subgroups. Similar problems on factorizable groups have been studied by various authors.

In [3] and [8], factorizable groups G = HK are studied, where H is 2-decomposable and K is nilpotent of odd order. Here a finite group H is called 2-*decomposable* if it is the direct product of a Sylow 2-subgroup, with O(H) the largest normal subgroup of H of odd order. When H is only a product of O(H) with a Sylow 2-subgroup, it is called 2-*nilpotent*. In [1] (also see [9]), we attempted to generalize the 2-decomposability of H to 2-nilpotency. However, we did not succeed completely. Imposing a stronger restriction on K, we obtain the following result.

Let G = HP be a group such that H is 2-nilpotent and P is a p-group of odd order. Then G is solvable.

The following is a generalization of the result above, which we obtain by removing the restriction on K.

Theorem 1 Let G = HK be a finite group such that H is 2-nilpotent and K nilpotent of odd order. Then G is solvable.

²⁰⁰⁰ Mathematics Subject Classification : Primary 20D40, 20D08; Secondary 20F16, 20F18.

Part of this work was supported by FONDECYT Grant # 1000623.