Estimates of spherical derivative of meromorphic functions

Shinji Yamashita

(Received July 3, 2000)

Abstract

The spherical derivative $f^{\#}=\left|f^{\prime}\right| /\left(1+|f|^{2}\right)$ of f meromorphic in $D=$ $\{|z|<1\}$ is estimated from above and below in terms of various geometrical quantities, for example, $\delta^{\#}(z, f), \rho(z, f)$, and $\rho_{a u}(z, f)$, in several theorems. A necessary and sufficient condition for $\left(1-|z|^{2}\right) f^{\#}(z)$ to be bounded in D is that there exists $r, 0<r \leq 1$, such that $f(w) \neq-1 / \overline{f(z)}$ for all $z, w \in D$ satisfying $|w-z| /|1-\bar{z} w|<r$. Also, $\left(1-|z|^{2}\right) f^{\#}(z)$ is bounded in D if and only if $\delta^{\#}(z, f) / \rho_{a u}(z, f)$ is bounded in D minus the points z where $f^{\#}(z)=0$. Applications to evaluating the Poincaré density in a plane domain will be considered.

Key words: normal meromorphic function; antipodal point; spherical and Poincaré distances; spherical derivative of meromorphic function; Poincaré density; Bloch function.

1. Introduction

Let a function f be meromorphic in the disk $D=\{|z|<1\}$. The spherical derivative $f^{\#}(z)$ of f at $z \in D$ is defined by $f^{\#}(z)=\left|f^{\prime}(z)\right| /(1+$ $\left.|f(z)|^{2}\right)$, if $f(z) \neq \infty$, and $f^{\#}(z)=\left|(1 / f)^{\prime}(z)\right|$, if $f(z)=\infty$. Then $f^{\#}=$ $(1 / f)^{\#}$ in D, where the constant function ∞ is regarded as a meromorphic function, so that $\infty^{\#}=0$. One can prove that $f^{\#}$ is continuous in D. Actually we shall be mainly concerned with a kind of derivative of f, namely,

$$
\Phi_{f}(z)=\left(1-|z|^{2}\right) f^{\#}(z), \quad z \in D .
$$

We call f normal if Φ_{f} is bounded in D; see [LV] for the details. Let $\rho_{a}(z, f)$ be the maximum of $r, 0<r \leq 1$, such that $f(w) \neq-1 / \overline{f(z)}$, the antipodal point of $f(z)$, for all w in the Apollonius disk, or the nonEuclidean disk

$$
\Delta(z, r)=\left\{w ;\left|\frac{w-z}{1-\bar{z} w}\right|<r\right\}
$$

of center z and the non-Euclidean radius $\operatorname{arctanh} r$. Such a $\rho_{a}(z, f)>0$

[^0]
[^0]: 2000 Mathematics Subject Classification : Primary 30D30; Secondary 30C50, 30C55, 30D45, 30F45.

