Estimates of spherical derivative of meromorphic functions

Shinji YAMASHITA

(Received July 3, 2000)

Abstract. The spherical derivative $f^{\#} = |f'|/(1+|f|^2)$ of f meromorphic in $D = \{|z| < 1\}$ is estimated from above and below in terms of various geometrical quantities, for example, $\delta^{\#}(z, f)$, $\rho(z, f)$, and $\rho_{au}(z, f)$, in several theorems. A necessary and sufficient condition for $(1 - |z|^2)f^{\#}(z)$ to be bounded in D is that there exists $r, 0 < r \le 1$, such that $f(w) \neq -1/\overline{f(z)}$ for all $z, w \in D$ satisfying $|w-z|/|1-\overline{z}w| < r$. Also, $(1-|z|^2)f^{\#}(z)$ is bounded in D if and only if $\delta^{\#}(z, f)/\rho_{au}(z, f)$ is bounded in D minus the points z where $f^{\#}(z) = 0$. Applications to evaluating the Poincaré density in a plane domain will be considered.

Key words: normal meromorphic function; antipodal point; spherical and Poincaré distances; spherical derivative of meromorphic function; Poincaré density; Bloch function.

1. Introduction

Let a function f be meromorphic in the disk $D = \{|z| < 1\}$. The spherical derivative $f^{\#}(z)$ of f at $z \in D$ is defined by $f^{\#}(z) = |f'(z)|/(1 + |f(z)|^2)$, if $f(z) \neq \infty$, and $f^{\#}(z) = |(1/f)'(z)|$, if $f(z) = \infty$. Then $f^{\#} = (1/f)^{\#}$ in D, where the constant function ∞ is regarded as a meromorphic function, so that $\infty^{\#} = 0$. One can prove that $f^{\#}$ is continuous in D. Actually we shall be mainly concerned with a kind of derivative of f, namely,

$$\Phi_f(z) = (1 - |z|^2) f^{\#}(z), \quad z \in D.$$

We call f normal if Φ_f is bounded in D; see [LV] for the details. Let $\rho_a(z, f)$ be the maximum of $r, 0 < r \leq 1$, such that $f(w) \neq -1/\overline{f(z)}$, the antipodal point of f(z), for all w in the Apollonius disk, or the non-Euclidean disk

$$\Delta(z,r) = \left\{ w; \left| \frac{w-z}{1-\overline{z}w} \right| < r \right\}$$

of center z and the non-Euclidean radius arctanh r. Such a $\rho_a(z, f) > 0$

²⁰⁰⁰ Mathematics Subject Classification : Primary 30D30; Secondary 30C50, 30C55, 30D45, 30F45.