Smooth unique solutions for a modified Mullins-Sekerka model arising in diblock copolymer melts

Joachim Escher and Yasumasa Nishiura

(Received June 12, 2000; Revised November 15, 2000)

Abstract

Of concern is a modified Mullins-Sekerka model arising in diblock copolymer melts. As the new feature of this system a nonlocal inhomogeneous term is introduced. It is shown that the corresponding moving boundary problem is classically well posed.

Key words: Mullins-Sekerka flow, Hele-Shaw flow, Cahn-Hilliard equation, free boundary problem, diblock copolymer melt, convexity, curvature.

1. Introduction

In [18] a modified Cahn-Hilliard equation is proposed to study microphase separation of diblock copolymer. Let Ω be a bounded domain in \mathbb{R}^{n} with a smooth boundary $\partial \Omega$ and consider the following parabolic initial boundary value problem

$$
\left\{\begin{align*}
u_{t}+\Delta\left(\varepsilon^{2} \Delta u+W^{\prime}(u)\right)-\sigma\left(u-\bar{u}_{0}\right) & =0 & & \text { in } \Omega \times(0, \infty) \tag{1.1}\\
\partial_{\nu} u=\partial_{\nu} \Delta u & =0 & & \text { on } \partial \Omega \times[0, \infty) \\
u(0, \cdot) & =u_{0} & & \text { in } \Omega,
\end{align*}\right.
$$

where ε and σ are positive contants and W stands for a double-well potential with global minima at ± 1. Moreover, $\bar{u}_{0}:=\frac{1}{|\Omega|} \int_{\Omega} u_{0} d x$, with $|\Omega|$ being the Lebesgue measure of Ω, and $\partial_{\nu} u$ stands for the derivative of u with respect to the outer unit normal ν on $\partial \Omega$. In the case $\sigma=0$ system (1.1) reduces to the usual Cahn-Hilliard model, cf. [21]. However, if one considers separation of diblock copolymer, the effect of nonlocality should be taken into account, which stems from a long-range interaction of diblock copolymer. The third term of the left-hand side of the first equation above comes from the nonlocal term associated to Gibbs energy and the parameter σ is inversely proportional to the square of the total chain length of the

[^0]
[^0]: 2000 Mathematics Subject Classification : 35R35, 35J05, 35B50, 53A07.
 The first author is grateful to Prof. Y. Giga and to Dr. K. Ito for their kind hospitality and for the stimulating discussions during his stay at Hokkaido University.

