A characterization of dense vector fields in $\mathcal{G}^1(M)$ on 3-manifolds

Takeharu YAMANAKA

(Received June 5, 2000; Revised October 30, 2000)

Abstract. Recently Morales-Pacfico-Pujals introduced the new concept of singular hyperbolicity and showed that C^1 robust transitive sets of 3-flows are singular hyperbolic sets ([8], [9]). Based on their papers, we shall characterize a dense subset of $\mathcal{G}^1(M)$ with dim M = 3.

Key words: $\mathcal{G}^1(M)$, singular hyperbolic set, Axiom A.

1. Introduction

The purpose of this paper is to study the space of vector fields known as $\mathcal{G}^1(M)$. Let M be a compact smooth manifold without boundary. We denote by $\chi^1(M)$ the set of C^1 vector fields on M, endowed with the C^1 topology and by X_t $(t \in \mathbb{R})$ the C^1 flow on M generated by $X \in \chi^1(M)$. $\Omega(X)$, per(X), Sing(X) are the sets of nonwandering, periodic and singular points of X respectively. Recall that a set $\Lambda \subset M$ is called a hyperbolic set of X if compact, invariant and there exists a continuous splitting $TM/\Lambda =$ $E^s \oplus E^X \oplus E^u$, invariant under the derivative of flow X_t , DX_t , where E^s and E^u are exponentially contracted and expanded respectively by DX_t and E^X is tangent to X. We say that $X \in \chi^1(M)$ satisfies Axiom A if $\Omega(X)$ is a hyperbolic set of X and $\Omega(X) = \overline{Sing(X) \cup per(X)}$ (We denote by \overline{A} the closure of A in M). Let $\mathcal{G}^1(M)$ be the interior of the set of vector fields in $\chi^1(M)$ whose critical elements (singularities and periodic orbits) are hyperbolic.

In [3], Hayashi showed that diffeomorphisms in $\mathcal{F}^1(M)$ satisfy Axiom A where $\mathcal{F}^1(M)$ is the diffeomorphism version of $\mathcal{G}^1(M)$ and this naturally give rise to the following question: Do vector fields in $\mathcal{G}^1(M)$ satisfy Axiom A? Unfortunately this does not hold generally and the geometric Lorenz attractor in [2] is well-known as one of the counter examples. Vector field generating this attractor is an element of $\mathcal{G}^1(M)$ but has singularities accu-

²⁰⁰⁰ Mathematics Subject Classification: 37C75, 37D05.