Absolute continuity of analytic measures

Hiroshi YAMAGUCHI

(Received February 21, 2002)

Abstract. We give an extension of a result due to Asmar, Montgomery-Smith and Saeki, which is concerned with absolute continuity of analytic measures. We also discuss the relation between the space $N(\sigma)$ and absolute continuity of analytic measures.

Key words: LCA group, measure, Fourier transform, absolute continuity.

1. Introduction

Let G be a LCA group with dual group \hat{G} . Let $L^1(G)$ and M(G) be the group algebra and the measure algebra, respectively. Let ψ be a nontrivial continuous homomorphism from \hat{G} into \mathbb{R} , and let $\phi : \mathbb{R} \to G$ be the dual homomorphism of ψ . Defining an action of \mathbb{R} on G by $t \cdot x = \phi(t) + x$ ($t \in \mathbb{R}$, $x \in G$), we get a transformation group (\mathbb{R}, G). Let σ be a quasi-invariant, (positive) Radon measure on G, and set $N(\sigma) = \{\mu \in M(G) : \phi(h) * \mu \ll \sigma \\\forall h \in L^1(\mathbb{R})\}$. Then $N(\sigma)$ is an $L^1(\mathbb{R})$ -module and an L-subspace of M(G). In general, we have

 $L^1(\sigma) \subset N(\sigma) \subset M(G).$

According to choice of G and σ , it may happen that $N(\sigma) = M(G)$ and $L^1(\sigma) \subsetneq N(\sigma) \subsetneq M(G)$ (cf. [6] and [14]). Any analytic measure in $N(\sigma)$ is absolutely continuous with respect to σ (Corollary 2.1 or [14, Corollary 2.1]). We show that $N(\sigma)$ is the largest $L^1(\mathbb{R})$ -module, L-subspace of M(G) such that any its analytic measure is necessarily absolutely continuous with respect to σ (Corollary 2.3). Recently, Asmar, Montgomery-Smith and Saeki obtained a new version of Bochner's generalization of the F. and M. Riesz theorem ([3, Theorem 4.5]). We also give another proof of it (Theorem 2.2).

2. Notation and results

Let G be a LCA group with dual group \hat{G} . We denote by $\mathfrak{B}(G)$ the σ -algebra of Borel sets in G. For $x \in G$, δ_x denotes the point mass at x. We

²⁰⁰⁰ Mathematics Subject Classification: 43A05, 43A10, 43A25.