Extension of holomorphic functions through a hypersurface by tangent analytic discs

Giuseppe ZAMPIERI

(Received May 14, 2001; Revised December 2, 2002)

Abstract. We prove a new criterion of extendibility of holomorphic functions from a domain $\Omega \subset \mathbb{C}^n$ by means of analytic discs A tangent to $\partial\Omega$, and verifying $\partial A \subset \overline{\Omega}$ and $\partial A \cap \Omega \neq \emptyset$.

Key words: CR functions, analytic discs.

1. Introduction

Let Ω be a domain of \mathbb{C}^n with boundary M, A an analytic disc *attached* to $\overline{\Omega}$ and not to M, that is verifying $\partial A \subset \overline{\Omega}$ but $\partial A \not\subset M$. We assume A to be tangent to M at some boundary point $z^o \in \partial A \cap M$, and let B be a ball with center z^{o} which contains \overline{A} . Then holomorphic functions f on $\Omega \cap B$ extend holomorphically to a fixed neighborhood of z^o (Theorem 2.1) herein). In spite of its appearence, this is in fact a result on propagation of holomorphic extendibility from Ω along boundaries of discs attached to M at points of tangency (Theorem 2.2 herein). The first result of this type is the HANGES-TREVES Theorem in [6] on propagation along discs which are entirely contained in M. Successively, in the paper [9], TUMANOV proved that defective discs attached to M are as well propagators of extendibility. Note that defective discs are all tangent but they do not exhaust the class of tangent discs. Also, if we assume that $\overline{A} \subset \overline{\Omega}$ but $\overline{A} \not\subset M$ in any neighborhood of z^o , then our result implies extension of germs at z^o of holomorphic functions on Ω . We recall that extendibility of germs (to either side of M) is equivalent to *minimality* of M in the sense of TREPREAU and TUMANOV. Hence, if M is not minimal, then one-sided discs tangent to M at z^{o} are in fact entirely contained in M (Proposition 4.1 herein). The method of the present paper consists in the analysis of the properties of superharmonicity of $\log r_f^{\nu}$ where r_f^{ν} denotes the radius of convergence of the Taylor series of a holomorphic function f on Ω in a direction $\nu \in \mathbb{C}^n \setminus \{0\}$. Another

²⁰⁰⁰ Mathematics Subject Classification : 58G, 32F.