Hokkaido Mathematical Journal Vol. 32 (2003) p. 451-455

Certain sufficient conditions for univalence

Virgil PESCAR

(Received March 13, 2002)

Abstract. In this work some integral operators are studied and the author determines conditions for the univalence of these integral operators.

Key words: integral operator, univalence.

1. Introduction

Let $U = \{z : |z| < 1\}$ be the unit disk in the complex plane and let A be the class of functions which are analytic in the unit disk normalized with f(0) = f'(0) - 1 = 0.

Let S the class of the functions $f \in A$ which are univalent in U.

2. Preliminary results

In order to prove our main results we will use the theorems presented in this section.

Theorem A [2] Assume that $f \in A$ satisfies condition

$$\left|\frac{z^2 f'(z)}{f^2(z)} - 1\right| < 1, \quad z \in U,$$
(1)

then f is univalent in U.

Theorem B [3] Let α be a complex number, $\operatorname{Re} \alpha > 0$ and $f(z) = z + a_2 z^2 + \cdots$ is a regular function in U. If

$$\frac{1-|z|^{2\operatorname{Re}\alpha}}{\operatorname{Re}\alpha}\left|\frac{zf''(z)}{f'(z)}\right| \le 1,$$
(2)

for all $z \in U$, then for any complex number β , $\operatorname{Re} \beta \geq \operatorname{Re} \alpha$ the function

$$F_{\beta}(z) = \left[\beta \int_{o}^{z} u^{\beta-1} f'(u) du\right]^{\frac{1}{\beta}} = z + \cdots$$
(3)

²⁰⁰⁰ Mathematics Subject Classification : Primary 30C45.