Another general inequality for CR-warped products in complex space forms

Bang-Yen CHEN

(Received February 27, 2002)

Abstract. We prove that every *CR*-warped product $N_T \times_f N_{\perp}$ in a complex space form $\tilde{M}^m(4c)$ of constant holomorphic sectional curvature 4c satisfies a general inequality: $||\sigma||^2 \ge 2p\{||\nabla(\ln f)||^2 + \Delta(\ln f)\} + 4hpc$, where $h = \dim_{\mathbb{C}} N_T$, $p = \dim_{\mathbb{R}} N_{\perp}$, and σ is the second fundamental form. We also completely classify *CR*-warped products in a complex space form which satisfy the equality case of this inequality.

Key words: CR-submanifold, CR-warped product, squared norm of second fundamental form, warping function, warped product, tensor product.

1. Introduction

A submanifold N of a Kähler manifold is called a CR-submanifold if there exists on N a differentiable holomorphic distribution \mathcal{D} whose orthogonal complementary distribution \mathcal{D}^{\perp} is a totally real distribution, i.e., $J\mathcal{D}_x^{\perp} \subset T_x^{\perp}N$ (cf. [1]). Throughout this paper we denote the complex rank of \mathcal{D} by h and the real rank of \mathcal{D}^{\perp} by p. The study of CR-submanifolds has been a very active field of research during the last two decades (see, for instance, [1–4, 6–9, 11, 13, 14]).

A CR-submanifold is called a CR-product if it is the direct product $N_T \times N_{\perp}$ of a holomorphic submanifold N_T and a totally real submanifold N_{\perp} . It was proved in [3] that a CR-product in a complex Euclidean space is a direct product of a holomorphic submanifold and a totally real submanifold of complex linear subspaces. It was also proved in [3] that there do not exist non-proper CR-products in complex hyperbolic spaces. Moreover, CR-products in the complex projective space CP^{h+p+hp} are obtained from the Segre imbedding in a natural way.

Let B and F be two Riemannian manifolds with Riemannian metrics g_B and g_F , respectively, and f be a positive differentiable function on B. The warped product $B \times_f F$ is the product manifold $B \times F$ equipped with the Riemannian metric $g = g_B + f^2 g_F$. The function f is called the warping

²⁰⁰⁰ Mathematics Subject Classification : 53C50, 53C42, 53B25.