Remark on application of distribution function inequality for Toeplitz and Hankel operators

Michiaki HAMADA

(Received January 15, 2002; Revised March 22, 2002)

Abstract. In this paper we characterize the compact product of analytic Toeplitz operator and Hankel operator, and the compact commutator of two Hankel operators, by using some distribution function inequalities.

Key words: Toeplitz and Hankel operators, distribution function inequality.

1. Introduction

Let \mathbb{D} be the open unit disk in the complex plane and $\partial \mathbb{D}$ be the unit circle. Let dA denote the normalized Lebesgue measure on \mathbb{D} and $d\sigma$ denote the normalized Lebesgue measure on $\partial \mathbb{D}$. The Lebesgue space L^2 is the space of square integrable functions on $\partial \mathbb{D}$ and the Hardy space H^2 is the closed subspace of L^2 which is spanned by analytic polynomials. For f in L^{∞} , the space of essentially bounded functions on the unit circle, Toeplitz operator T_f and Hankel operator H_f on Hardy space H^2 is defined by $T_f g =$ P(fg) and $H_fg = J(I-P)(fg)$, where P is the orthogonal projection from L^2 onto H^2 and J is the unitary operator on L^2 defined by $Jg(w) = \overline{w}g(\overline{w})$. It is easily seen that $J^2 = I$, J(I - P) = PJ. This definition of Hankel operator may not be standard because many authors call next operator \mathcal{H}_f Hankel operator: $\mathcal{H}_f g = (I-P)(fg)$. Clearly \mathcal{H}_f is bounded transformation of H^2 to $(H^2)^{\perp}$ and $H_f = J\mathcal{H}_f$. H_f and \mathcal{H}_f have many similar properties. For example matrix representations of H_f and \mathcal{H}_f with respect to standard basis of H^2 and $(H^2)^{\perp}$ are both characterized that the entries on each skew-diagonal direction are the same constant. In this paper we are mainly interested in Hankel operator H_f .

Many authors have studied Toeplitz and Hankel operators with respect to the compact operators, and I think one of the most beautiful results of these operators are Axler-Chang-Sarason-Volberg theorem ([1], [13]). In 1970's they characterized the condition for the compactness of semi-

²⁰⁰⁰ Mathematics Subject Classification : 47B35.