Extremal odd unimodular lattices in dimensions 44, 46 and 47

Masaaki HARADA

(Received October 29, 2001)

Abstract. In this note, extremal odd unimodular lattices in dimensions 44, 46 and 47 are constructed from self-dual codes over \mathbb{Z}_4 and \mathbb{Z}_6 by Construction A. The lattices in dimensions 46 and 47 seem to be the first explicit examples for such lattices.

Key words: unimodular lattices, self-dual codes, Construction A.

1. Introduction

A (Euclidean) lattice L is *integral* if $L \subseteq L^*$ where L^* is the dual lattice under the standard inner product $\langle x, y \rangle$. An integral lattice with $L = L^*$ is called *unimodular*. The minimum norm $\min(L)$ of L is the smallest norm among all nonzero vectors of L. Rains and Sloane [8] show that the minimum norm μ of an *n*-dimensional unimodular lattice is bounded by

$$\mu \le 2\left[\frac{n}{24}\right] + 2 \tag{1}$$

unless n = 23 when $\mu \leq 3$. We say that an *n*-dimensional (odd) unimodular lattice meeting the bound is called *extremal*. It is a fundamental problem to determine if such a lattice exists for each dimension (cf. [3] and [9]). Conway and Sloane [3] gave the exact bound for the minimum norm of a unimodular lattice of dimensions up to 33. Their work is extended to dimensions 45 except 37, 41, 43 (cf. [9]).

In this note, extremal odd unimodular lattices in dimensions 44, 46 and 47 are constructed by Construction A from self-dual \mathbb{Z}_6 -codes of length 44, \mathbb{Z}_4 -codes of lengths 46, 47, respectively. These codes are obtained by considering subtracting from some known extremal self-dual codes of larger lengths. Our lattices in dimensions 46 and 47 seem to be the first explicit examples of extremal ones in these dimensions (cf. [9]).

²⁰⁰⁰ Mathematics Subject Classification : 11H, 94B.