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Extremal odd unimodular lattices in
dimensions 44, 46 and 47
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Abstract. In this note, extremal odd unimodular lattices in dimensions 44, 46 and 47
are constructed from self-dual codes over \mathbb{Z}_{4} and \mathbb{Z}_{6} by Construction A. The lattices in

dimensions 46 and 47 seem to be the first explicit examples for such lattices.
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1. Introduction

A (Euclidean) lattice L is integral if L\subseteq L^{*} where L^{*} is the dual lattice
under the standard inner product \langle x, y\rangle . An integral lattice with L=L^{*}

is called unimodular. The minimum norm \min(L) of L is the smallest
norm among all nonzero vectors of L . Rains and Sloane [8] show that the
minimum norm \mu of an n-dimensional unimodular lattice is bounded by

\mu\leq 2[\frac{n}{24}]+2 (1)

unless n=23 when \mu\leq 3 . We say that an n-dimensional (odd) unimodular
lattice meeting the bound is called extremal. It is a fundamental problem
to determine if such a lattice exists for each dimension (cf. [3] and [9]).
Conway and Sloane [3] gave the exact bound for the minimum norm of
a unimodular lattice of dimensions up to 33. Their work is extended to
dimensions 45 except 37, 41, 43 (cf. [9]).

In this note, extremal odd unimodular lattices in dimensions 44, 46
and 47 are constructed by Construction A from self-dual \mathbb{Z}_{6}-codes of length
44, \mathbb{Z}_{4}-codes of lengths 46, 47, respectively. These codes are obtained by
considering subtracting from some known extremal self-dual codes of larger
lengths. Our lattices in dimensions 46 and 47 seem to be the first explicit
examples of extremal ones in these dimensions (cf. [9]).
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