Extrinsic upper bounds for the first eigenvalue of elliptic operators

Jean-François Grosjean

(Received March 22, 2002; Revised October 28, 2002)

Abstract. We consider operators defined on a Riemannian manifold M^m by $L_T(u) = -\operatorname{div}(T\nabla u)$ where T is a positive definite symmetric (1, 1)-tensor such that $\operatorname{div}(T) = 0$. We give an upper bound for the first nonzero eigenvalue $\lambda_{1,T}$ of L_T in terms of the second fundamental form of an immersion ϕ of M^m into a Riemannian manifold of sectional curvature bounded above by δ . We apply these results to a particular family of operators defined on hypersurfaces of the space forms and we prove a stability result.

Key words: r-th mean curvature, Reilly's inequality.

1. Introduction

Let (M^m, g) be a compact, connected m-dimensional Riemannian manifold. In this paper, we are interested in extrinsic upper bounds for the first nonzero eigenvalue of elliptic operators defined on (M^m, g) (i.e. in terms of the second fundamental form of an isometric immersion of (M^m, g) into an n-dimensional Riemannian manifold (N^n, h)). The elliptic second order differential operators L_T , which we are interested in, are of the form

$$L_T u = -\mathbf{div}_M(T\nabla^M u), \quad u \in C^{\infty}(M),$$

where T is a (1, 1)-tensor on M (which will be divergence-free and symmetric), and \mathbf{div}_M and ∇^M denote respectively the divergence and the gradient with respect to the metric g. In the sequel, we will denote by $\lambda_{1,T}$, the first nonzero eigenvalue of such operator L_T .

When T is the identity, $L_T = L_{\mathrm{Id}}$ is nothing but the Laplace operator of (M^m, g) . In this case, it is well known that if (M^m, g) is isometrically immersed in the simply connected space form $N^n(c)$ (c = 0, 1, -1) respectively for the Euclidean space \mathbb{R}^n , the sphere \mathbb{S}^n or the hyperbolic space \mathbb{H}^n), then we have the following estimate of $\lambda_1 = \lambda_{1,\mathrm{Id}}$ in terms of the square of the length of the mean curvature