PARTIALLY ORDERED ABELIAN SEMIGROUPS

I. ON THE EXTENSION OF THE STRONG PARTIAL ORDER DEFINED ON ABELIAN SEMIGROUPS

By

Osamu NAKADA

Definition 1. A set S is said to be a partially ordered abelian semigroup (p. o. semigroup), when in S are satisfied the following conditions:

- S is an abelian semigroup under the multiplication, that is:
 A single-valued product ab is defined in S for any pair a, b of S,
 - 2) ab = ba for any a,b of S,
 - 3) (ab) c = a (bc) for any a, b, c of S.
- II) S is a partially ordered set under the relation \geq , that is: 1) $a \geq a$,
 - 2) $a \ge b$, $b \ge a$ imply a = b,
 - 3) $a \ge b$, $b \ge c$ imply $a \ge c$.
- III) Homogeneity: $a \ge b$ implies $ac \ge bc$ for any c of S.

A partial order which satisfies the condition III) is called a partial order defined on an abelian semigroup.

If S is an abelian group, then S is said to be a partially ordered abelian group (p. o. group).

Moreover, if a partial order defined on an abelian semigroup (group) S is a linear order, then S is said to be a *linearly ordered abelian semi*group (group) (l. o. semigroup (l. o. group)).

We write a > b for $a \ge b$ and $a \ne b$.

Definition 2. A partial order defined on an abelian semigroup S (or a p.o. semigroup S) is called *strong*, when the following condition is satisfied: $ac \ge bc$ implies $a \ge b$.

Theorem 1. A partial order defined on an abelian group G is always strong.

Proof. Since G is a group, there exists an inverse element c^{-1} of c. By the homogeneity $ac \ge bc$ implies $(ac) c^{-1} \ge (bc) c^{-1}$. Therefore $a \ge b$.