STRONGLY π -REGULAR RINGS

By

Gorô AZUMAYA

ARENS-KAPLANSKY [1] and KAPLANSKY [3] investigated, as generalizations of algebraic algebras and rings with minimum condition, following two types of rings: one is a π -regular ring, that is, a ring in which for every element a there exists an element x and a positive integer n such that $a^n x a^n = a^n$, and the other is a ring in which for every a there exists an x and an n such that $a^{n+1}x=a^n$ — this we shall call a right π -regular ring. The present note is devoted mainly to Apparently, the two notions of study the latter more precisely. π -regularity and right π -regularity are different ones in general. However we can prove, among others, that under the assumption that a ring is of bounded index (of nilpotency) it is π -regular if and only if it is right π -regular. Moreover, we shall show, in this case, that we may find, for every a, an element z such that az=za and $a^{n+1}z=a^n$, where n is the least upper bound of all indices of nilpotency in the This is obviously a stronger result than a theorem of Kaplansky (2) as well as that of Gertschikoff (3), both of which are stated in section 8 of Kaplansky [3].

1. Strong regularity. Let A be a ring. Let a be an element of A. a is called regular (in A) if there exists an element x of A such that axa=a, while a is said to be right (or left) regular if there exists x such that $a^2x=a$ (or $xa^2=a$). Further, we call a strongly regular if it is both right regular and left regular.

Lemma 1. Let a be a strongly regular element of A. Then there exists one and only one element z such that az=za, $a^2z(=za^2)=a$ and $az^2(=z^2a)=z$, and in particular a is regular. For any element x such that $a^2x=a$, z coincides with ax^2 . Moreover, z commutes with every element which is commutative with a.

Proof. Let x, y be two elements such that $a^2x=a$, $ya^2=a$. Then

$$ax = ya^2x = ya,$$

so that