STRONGLY τ-REGULAR RINGS

By
Gorô AzUMAYA

Arens-Kaplansky [1] and Kaplansky [3] investigated, as generalizations of algebraic algebras and rings with minimum condition, following two types of rings: one is a π-regular ring, that is, a ring in which for every element a there exists an element x and a positive integer n such that $a^{n} x a^{n}=a^{n}$, and the other is a ring in which for every a there exists an x and an n such that $a^{n+1} x=\alpha^{n}$ - this we shall call a right π-regular ring. The present note is devoted mainly to study the latter more precisely. Apparently, the two notions of π-regularity and right π-regularity are different ones in general. However we can prove, among others, that under the assumption that a ring is of bounded index (of nilpotency) it is π-regular if and only if it is right π-regular. Moreover, we shall show, in this case, that we may find, for every a, an element z such that $a z=z a$ and $a^{n+1} z=a^{n}$, where n is the least upper bound of all indices of nilpotency in the ring. This is obviously a stronger result than a theorem of Kaptansky (2) as well as that of Gertschikoff (3), both of which are stated in section 8 of Kaplansky [3].

1. Strong regularity. Let A be a ring. Let a be an element of A. a is called regular (in A) if there exists an element x of A such that $a x a=a$, while a is said to be right (or left) regular if there exists x such that $a^{2} x=a$ (or $x \alpha^{2}=a$). Further, we call a strongly regular if it is both right regular and left regular.

Lemma 1. Let a be a strongly regular element of A. Then there exists one and only one element z such that $a z=z a, a^{2} z\left(=z a^{2}\right)=a$ and $a z^{2}\left(=z^{2} a\right)=z$, and in particular a is regular. For any element x such that $a^{2} x=a, z$ coincides with $a x^{2}$. Moreover, z commutes with every element which is commutative with a.

Proof. Let x, y be two elements such that $a^{2} x=a, y a^{3}=a$. Then

$$
\begin{equation*}
a x=y a^{2} x=y a, \tag{.1}
\end{equation*}
$$

so that

