A CHARACTERIZATION OF THE MODULARS OF L_p TYPE

By

Ichiro AMEMIYA

A modular on a universally continuous semi-ordered linear space R is, as defined in [1], a functional $m(x) (x \in R)$ satisfying the following conditions:

(i) $0 \leq m(x) \leq +\infty$, m(0) = 0;

(ii) $m(\xi x)$ is a convex function of ξ which is finite in a neighbourhood of 0 and not identically zero, if $x \neq 0$;

(iii) $|x| \leq |y|$ implies $m(x) \leq m(y)$;

(iv) $x \perp y$ implies m(x+y) = m(x) + m(y);

(v) $0 \leq x_{\lambda} \uparrow_{\lambda \in A} v$ implies $m(x) = \sup m(x_{\lambda})$.

Since the set of elements $\{x: m(v) \leq 1\}$ is convex, we can define a norm |||x||| such that $|||x||| \leq 1$ is equivalent to $m(x) \leq 1$. This norm is said to be the *modular norm*. On the other hands, putting

$$\|x\|=\inf_{\xi>0}rac{1+m(\xi x)}{\xi}$$

we obtain another norm which is conjugate to the modular norm of the conjugate modular in case that the space R is semi-regular. We have a relation between these two norms, that is,

,

$$\|x\| \leq \|x\| \leq 2 \|x\|.$$

In the space $L_p(p \ge 1)$, putting

$$m\left(\pmb{x}
ight) =\int_{0}^{1}\mid \pmb{x}(t)\mid ^{p}dt$$
 ,

we obtain a modular and we have in this case

$$(1) \qquad \qquad m(x) = \|x\|^p$$

and

$$(2)$$
 $\|x\| = lpha \|x\|$,

where, α is the number such that