FOURIER SERIES IX: STRONG SUMMABILITY OF THE DERIVED FOURIER SERIES.

By

Shin-ichi IZUMI and Masakiti KINUKAWA

1. Introduction. Let f(x) be an integrable and periodic function with period 2π and its Fourier series and its conjugate be

$$(1.1)$$
 $a_{0}/2+\sum\limits_{n=1}^{\infty}\left(a_{n}\cos nx+b_{n}\sin nx
ight)\equiv\sum\limits_{n=0}^{\infty}A_{n}\left(x
ight)$,

$$(1.2) \qquad \sum_{n=1}^{\infty} (b_n \cos nx - a_n \sin nx) \equiv \sum_{n=1}^{\infty} B_n(x) .$$

Further, let their termwise derived series be

$$(1.3) \qquad \sum_{n=1}^{\infty} n \left(b_n \cos nx - a_n \sin nx \right) = \sum_{n=1}^{\infty} n B_n(x) ,$$

$$(1.4) -\sum_{n=1}^{\infty} n (a_n \cos nx + b_n \sin nx) = -\sum_{n=1}^{\infty} nA_n(x).$$

A series $\sum\limits_{n=1}^{\infty}c_n$ is said to be summable H_k or strongly summable to s, if

$$\sum_{n=0}^{m} |s_n - s|^k = o(m) \qquad (m \to \infty) ,$$

where $s_n = \sum_{k=0}^n c_k$.

B. N. Prasad and U. N. Singh [7] have found a criteria for H_1 summability of the derived Fourier series which reads as follows:

Theorem A. If f(t) is a continuous function of bounded variation and if for some a > 1,

$$(1.5)$$
 $G(t) = \int_0^t |dg(u)| = o\left\{t \left/\left(\log \frac{1}{t}\right)^a
ight\}, \quad as \quad t o 0$,

where $g\left(u\right)=g_{x}\left(u\right)=f\left(x+u\right)-f\left(x-u\right)-2us$, then

$$\sum_{n=1}^{m} |\tau_n(x) - s| = o(m) ,$$