ON F-NORMS OF QUASI-MODULAR SPACES

By

Shôzô KOSHI and Tetsuya SHIMOGAKI

- §1. Introduction. Let R be a universally continuous semi-ordered linear space (i.e. a conditionally complete vector lattice in Birkhoff's sense [1]) and ρ be a functional which satisfies the following four conditions:
- $(\rho.1) \qquad 0 \leq \rho(x) = \rho(-x) \leq +\infty \quad \text{for all } x \in R;$
- $(\rho.2) \qquad \rho(x+y) = \rho(x) + \rho(y) \quad \text{for any } x, y \in R \text{ with } x \perp y^{1};$
- (\rho.3) If $\sum_{\lambda \in A} \rho(x_{\lambda}) < +\infty$ for a mutually orthogonal system $\{x_{\lambda}\}_{\lambda \in A}^{2}$, there exists $x_{0} \in R$ such that $x_{0} = \sum_{\lambda \in A} x$ and $\rho(x_{0}) = \sum_{\lambda \in A} \rho(x_{\lambda})$;
- $(\rho.4) \qquad \overline{\lim}_{\xi \to 0} \rho(\xi x) < +\infty \quad \text{for all } x \in R.$

Then, ρ is called a quasi-modular and R is called a quasi-modular space.

In the previous paper [2], we have defined a quasi-modular space and proved that if R is a non-atomic quasi-modular space which is semi-regular, then we can define a modular³⁾ m on R for which every universally continuous linear functional⁴⁾ is continuous with respect to the norm defined by the modular⁵⁾ m [2; Theorem 3.1].

Recently in [6] J. Musielak and W. Orlicz considered a modular ρ on a linear space L which satisfies the following conditions:

- (A.1) $\rho(x) \ge 0$ and $\rho(x) = 0$ if and only if x = 0;
- $(A.2) \qquad \rho(-x) = \rho(x) ;$
- (A.3) $\rho(\alpha x + \beta y) \leq \rho(x) + \rho(y)$ for every $\alpha, \beta \geq 0$ with $\alpha + \beta = 1$;
- (A.4) $\alpha_n \to 0$ implies $\rho(\alpha_n x) \to 0$ for every $x \in R$;
- (A.5) for any $x \in L$ there exists $\alpha > 0$ such that $\rho(\alpha x) < +\infty$.

They showed that L is a quasi-normed space with a quasi-norm $||\cdot||_0$ defined by the formula;

- 1) $x \perp y$ means $|x| \cap |y| = 0$.
- 2) A system of elements $\{x_{\lambda}\}_{{\lambda} \in A}$ is called mutually orthogonal, if $x_{\lambda} \perp x_{r}$ for ${\lambda} \neq {\gamma}$.
- 3) For the definition of a modular, see [3].
- 4) A linear functional f is called *universally continuous*, if $\inf_{\lambda \in A} f(a_{\lambda}) = 0$ for any $a_{\lambda} \downarrow_{\lambda \in A} 0$. R is called semi-regular, if for any $x \neq 0$, $x \in R$, there exists a universally continuous linear functional f such that $f(x) \neq 0$.
- 5) This modular ρ is a generalization of a modular m in the sense of Nakano [3 and 4]. In the latter, there is assumed that $m(\xi x)$ is a convex function of $\xi \ge 0$ for each $x \in R$.