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By an almost prime is meant a positive rational integer the number of
prime factors of which is bounded by a certain constant. Let us denote by
$\Omega(n)$ the total number of prime factors of a positive integer $n$ . In 1920 Viggo
Brun [2] elaborated an elementary method of the sieve of Eratosthenes to
prove that for all sufficiently large $x$ there exists at least one integer $n$ with
$\Omega(n)\leqq 11$ in the interval $x\leqq n\leqq x+x^{\frac{1}{2}}$ . Quite recently W. E. Mientka [4]
improved this result of Brun, showing that for all large $x$ there exists at least
one integer $n$ with $\Omega(n)\leqq 9$ in the interval $x\leqq n\leqq x+x^{\frac{1}{2}}$ . To establish this
Mientka makes use of the sieve method due to A. Selberg instead of Brun’s
method (cf. [3] and [4]). By refining the argument of Mientka [4] we can
further improve his result. Indeed, we shall prove in this paper the following

Theorem. Let $k\geqq 2$ be a fixed integer. Then, for all sufficiently large
$x$ , there exists at least one integer $n$ with $\Omega(n)\leqq 2k$ in the interval $x<n\leqq x$

$+x^{t/k}$ .
Thus, in particular, if $k=2$ then for all large $x$ the interval $x<n\leqq x+x^{\frac{1}{2}}$

always contains an integer $n$ such that $\Omega(n)\leqq 4$ . Of course, the restriction in
the theorem that $k$ be integral may be relaxed without essential changes in
the result.

Let us mention that the existence of a prime number $p$ in the interval
$x<p\leqq x+x^{\iota/k}$ for all large $x$ could not be deduced, as is well known, even
from the Riemann hypothesis if only $k=2$ .

Note. It is possible to generalize our theorem presented above so as to
concem with the distribution of almost primes in an arithmetic progression.
Thus, if $a$ and $b$ are integers such that $a\geqq 1,0\leqq b\leqq a-1,$ $(a, b)=1$ , then we
can prove the existence of an integer $n$ satisfying

$x<n\leqq x+x^{1/k},$ $n\equiv b(mod a)$ ,
$\Omega(n)\leqq 2k$ ,

provided that $x$ be sufficiently large, $k\geqq 2$ being a fixed integer. Here, in
particular, in the case of $k=2$ , the inequality $\Omega(n)\leqq 4$ may be replaced by
$\Omega(n)\leqq 3$ : this result is apparently stronger than the above theorem for the


