On homotopically trivial links

Dedicated to Professor Yoshie Katsurada on her 60th birthday

By Kazuaki KOBAYASHI

§1. Introduction.

Throughout this paper we shall only be concerned with the combinatorial category, consisting of simplicial complexes and piecewise linear maps (for the combinatorial categoryf see [3]). Zeeman [3] shows that if (n, k, 2)link $L=(S^n \supset K_1^k \cup K_2^k)$ is homotopically trivial and if $2n \ge 3k+4$, then L is geometrically trivial. And if n=k+2, it is well known that there exists a homopically trivial (n, n-2, 2)-link which is not geometrically trivial (for example, in (3, 1, 2)-link). For the case $n \ge k+3$ and $2n \le 3k+3$ Zeeman says that there exist homotopically trivial links which are not geometrically trivial same as (3, 1, 2)-link. But there is no proof for these links be geometrically non-trivial. So we consider the relation between homotopically trivial links and geometrically trivial links under $n \ge k+3$ and $2n \le 3k+3$. In this paper we obtain a geometrical sufficient condition for a homotopically trivial (n, k, 2)link be geometrically trivial. I should like to express my sincere gratitude to the members of Kōbe and Hokkaidō topology seminars for many discussion of this problem.

§2. Notations and Definitions

 S^n is a standard *n*-sphere and D^n is a standard *n*-cell. An (n, k, 2)-link L is a pair $(S^n \supset K_1^k \cup K_2^k)$ of an *n*-sphere S^n and a disjoint union of locally flatly embedded *k*-spheres K_i^k , i=1, 2 in S^n . ∂X and Int X mean the boundary and the interior of a manifold X. X * Y denote the join of spaces X and Y. \cong means "homeomorphic to". $\bigvee_{i=1}^m S_i^p$ means one point join of *p*-spheres S_1^p, \dots, S_m^p and I=[0, 1]. For any manifolds X, Y such that X is a submanifold of Y, U(X, Y) means a regular neighborhood of X in Y. And we always take U(X, Y) to be a second derived neighborhood of X in Y in Y for a suitable subdivision of X and Y unless otherwise stated.

DEFINITION 1. Let X, Y be subsets in an *n*-manifold Z. We say that X and Y split each other in Z if there exists an *n*-cell B^n in Z such that either $X \subset \text{Int } B^n$, $Y \cap B^n = \phi$ or $Y \subset \text{Int } B^n$, $X \cap B^n = \phi$.