A remark on doubly transitive groups

To Professor Yoshie Katsurada on the occasion of her 60th birthday

By Hiroshi KIMURA

1. This note is a continuation of [12]. We shall use the same notation. The purpose of this note is to prove the following.

THEOREM. Let S be a doubly transitive permutation group of odd degree satisfying the following conditions.

(2) All Sylow subgroups of $\mathfrak{G}_{1,2}$ are cyclic,

(3) $\chi(\tau)$ contains a regular normal subgroup,

- (4) 0 has one class of involutions,
- (5) $\mathfrak{G}_{1,2}$ has unique involution.

Then & contains a regular normal subgroup.

From this and [12, Theorem] we obtain the following.

COROLLARY. Let \mathfrak{G} be a doubly transitive permutation group of odd degree satisfying the above conditions (1), (2) and (3). Then \mathfrak{G} contains a regular normal subgroup or it is isomorphic to one of the groups S_5 with n=5 and PSL (2, 11) with n=11.

2. Assume \mathfrak{G} does not contain a regular normal subgroup. By [12, Theorem 1] we may assume that $|\mathfrak{R}| > 2$ and $\mathfrak{R}_0 = \langle \tau \rangle$. Thus d/2 is odd. From the condition (4) a Sylow 2-subgroup of $C_{\mathfrak{G}}(\tau)$ is also a Sylow 2-subgroup of \mathfrak{G} .

LEMMA 1. A Sylow 2-subgroup of $C_{\mathfrak{G}}(\tau)$ is not metacyclic.

PROOF. Let \mathfrak{S} be a Sylow 2-subgroup of $C_{\mathfrak{S}}(\tau)$ containing $\langle \mathfrak{R}, I \rangle$ and let \mathfrak{S}' be a cyclic normal subgroup of \mathfrak{S} such that $\mathfrak{S}/\mathfrak{S}'$ is cyclic. If $|\mathfrak{S}/\mathfrak{S}'| > 2$, then \mathfrak{S} is solvable by [11]. Therefore $\mathfrak{S} = \langle I, \mathfrak{S}' \rangle$. Since $\mathfrak{R} \neq \langle \tau \rangle$, $|\mathfrak{S}'| > 2$. If \mathfrak{S} is abelian, then \mathfrak{S} is solvable by the Burnside's splitting theorem. If \mathfrak{S} is dihedral or semi-dihedral, then $\mathfrak{R}_0 \neq \langle \tau \rangle$, which is a contradiction. If $S' = S\tau$ for a generator S of $\mathfrak{S}', \mathfrak{S}$ is solvable by [13]. Thus \mathfrak{S} is not metacylic.

LEMMA 2. $\chi_1(\tau)$ is contained in $C_{\mathfrak{G}}(I)$.

PROOF. Assume that there exists a Sylow q-subgroup \mathfrak{F}_{q} of $\mathfrak{X}_{1}(\tau)$ such that $\langle \mathfrak{F}_{q}', I \rangle$ is dihedral. Let \mathfrak{S}' be a Sylow 2-subgroup of $C_{\mathfrak{G}}(\mathfrak{F}_{q}')$ containing