Local solution of Cauchy problem for nonlinear hyperbolic systems in Gevrey classes

By Kunihiko KAJITANI (Received January 4, 1983)

Introduction

The Cauchy problem for nonlinear hyperbolic equations in Gevrey classes was studies by Leray-Ohya [7] (c. f. [8]). They assume that the characteristics are of constant multiplicity or smooth. In this paper we shall remove this restriction.

We consider the following equations for the unknowns $u(x)=(u_1(x), \dots, u_N(x)), x=(x_0, x_1, \dots, x_n)=(x_0, x')\in \mathbb{R}^{n+1}$,

(0.1)
$$F_i(x, D^{M_i}u(x)) = 0 \text{ in } \Omega, \quad i = 1, ..., N,$$

where Ω is a neighborhood of 0 in \mathbb{R}^{n+1} and

$$D^{\mathfrak{M}_{i}}u(x) = \left\{ D^{\mathfrak{M}_{i}}u_{1}(x), \dots, D^{\mathfrak{M}_{i}}u_{N}(x) \right\}$$
$$D^{\mathfrak{M}_{ij}}u_{j}(x) = \left\{ (\partial/\partial x_{0})^{\alpha_{0}}(\partial/\partial x_{1})^{\alpha_{1}}\cdots(\partial/\partial x_{n})^{\alpha_{n}}u_{j}(x) ; \ \alpha = (\alpha_{0}, \alpha_{1}, \dots, \alpha_{n}) \in M_{ij} \right\}$$

and M_{ij} is a finite set of non negative multi indices.

We assume that $\{F_i\}$ is a Leray-Volevich system of order *m*, that is, there exist non negative integers n_1, \dots, n_N such that for $\alpha \in M_{ij}$,

$$(0.2) \qquad |\alpha| = \alpha_0 + \alpha_1 + \cdots + \alpha_n \leq m + n_j - n_i, \qquad i, j = 1, \cdots, N.$$

Then we can prescribe the following Cauchy data to the equations (0.1),

$$(0.3) (\partial/\partial x_0)^j u_i(0, x') = \varphi_{ji}(x'), j = 0, \dots, m-1, i = 1, \dots, N.$$

We introduce coordinate variables

$$y_{ij} = (y_{\alpha}; \alpha \in M_{ij}) \text{ in } R^{r_{ij}}, \quad i, j = 1, \dots, N,$$

 $y_i = (y_{ij}; j = 1, \dots, N) \text{ in } R^{r_i}, \quad i = 1, \dots, N,$
 $y = (y_i; i = 1, \dots, N) \text{ in } R^r,$

where r_{ij} is the number of the elements of M_{ij} , $r_i = r_{i1} + \cdots + r_{iN}$ and $r = r_1 + \cdots + r_N$.

We assume that $F_i(x, y)$, $i=1, \dots, N$ are in Gevrey class s in x and