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Introduction

The Cauchy problem for nonlinear hyperbolic equations in Gevrey classes
was studies by Leray-Ohya [7] (c. f. [8]) . They assume that the character-
istics are of constant multiplicity or smooth. In this paper we shall removethis restriction.

We consider the following equations for the unknowns u(x)=(u_{1}(x), \cdots ,
u_{N}(x)) , x=(x_{0}, x_{1^{ }},\cdots, x_{n})=(x_{0}, d)\in R^{n+1},

(0. 1) F_{i}(x, D^{M_{i}}u(x))=0 in \Omega , i=1, \cdots , N ,
\backslash vhere\Omega is a neighborhood of 0in R^{n+1} and

D^{M_{i}}u(x)=\{D^{M_{i1}}u_{1}(x) , \cdots , D^{M_{iN}}u_{N}(x)\}

D^{M_{ij}}u_{f}(x)=\{(\partial/\partial x_{0})^{\alpha_{0}}(\partial/\partial x_{1})^{\alpha_{1}}\cdots(\partial/\partial x_{n})^{\alpha}nu_{j}(x);\alpha=(\alpha_{0}, \alpha_{1^{ }},\cdots, \alpha_{n})\in M_{if}\}

and M_{ij} is a finite set of non negative multi indices.
We assume that \{F_{i}\} is a Leray-Volevich system of order m, that is,

there exist non negative integers n_{1} , \cdots , n_{N} such that for \alpha\in M_{ij} ,
(0. 2) |\alpha|=\alpha_{0}+\alpha_{1}+\cdots+\alpha_{n}\leq m+n_{j}-n_{i}, i,j =1 , \cdots , N
Then we can prescribe the following Cauchy data to the equations (0. 1),
(0. 3) (\partial/\partial x_{0})^{j}u_{i}(0, x’)=\varphi_{ji}(x’)j j=0, \cdots , m-1 , i=1, \cdots , N

We introduce coordinate variables
y_{ij}=(y_{\alpha} ; \alpha\in M_{if}) in R^{r_{ij}} , i,j=1, \cdots , N ,

y_{i}=(y_{if} ; j=1, \cdots, N) in R^{r_{i}} , i=1, \cdots N ,
y=(y_{i} ; i=1, \cdots, N) in R^{r} ,

where r_{ij} is the number of the elements of M_{ij} , r_{i}=r_{i1}+\cdots+r_{iN} and r=
r_{1}+\cdots+r_{N}.

We assume that F_{i}(x, y) , i=1, \cdots , N are in Gevrey class s in x and


