Hokkaido Mathematical Journal Vol. 12 (1983) p. 276-292

Aberrant CR structures

By Howard JACOBOWITZ^{*)} and Francois TREVES^{**)} (Received September 27, 1982)

Contents

0. Introduction. Statement of results

1. Perturbations of locally integrable structures

2. Reduction to the case n=1

3. The case n=1

4. End of the proof of Theorem I. Proof of Theorem II

References

0. Introduction. Statement of results

Throughout this work Ω denotes a C^{∞} manifold, countable at infinity, of dimension 2n+1 $(n\geq 1)$. What we call here an *abstract CR structure* (to be precise one should add "of codimension one") is the datum of a C^{∞} vector subbundle \mathscr{C} of the complex tangent bundle $CT\Omega$ (henceforth called *the CR bundle*) submitted to the following three conditions:

(0.1) $[\mathscr{C}, \mathscr{C}] \subset \mathscr{C}$, i.e., the commutation bracket of any two smooth sections of \mathscr{C} over an open subset of Ω is a section of \mathscr{C} over that same subset;

(0.2) $\mathscr{C} \cap \overline{\mathscr{C}} = \{0\} \ (\overline{\mathscr{C}} \text{ is "the complex conjugate" of } \mathscr{C});$

$$(0, 3)$$
 the fibre dimension over C of C is equal to n.

Call \mathscr{C}' the orthogonal of \mathscr{C} in the complex cotangent bundle $CT^*\Omega$ for the duality between tangent and cotangent vectors. Note that (0, 2) is equivalent to

 $(0.4) CT*\Omega = \mathscr{C}' + \overline{\mathscr{C}}' .$

Let Ω' be any open subset of Ω . A C^1 function (resp., a distribution) f in Ω' is called a CR function (resp., a CR distribution) if Lf=0 whatever the smooth section L of \mathscr{C} over Ω' . The differentials of the C^1 CR functions are continuous sections of \mathscr{C}' . The CR structure \mathscr{C} is said to be *locally*

^{*)} Supported by NSF Grant MCS-8003048

^{**)} Supported by NSF Grant MCS-8102435