On Beurling's theorem

By Hiroshi Tanaka*)

Introduction

Let \(R, R' \) be hyperbolic Riemann surfaces and \(\phi \) be an analytic mapping of \(R \) into \(R' \). Let \(K_0 \) be a closed disk in \(R \) and let \(R_0 = R - K_0 \). Let \(C \) be the Kuramochi capacity on \(R_0 \cup \Delta_N \) and \(\Delta_i \) be the set of all minimal Kuramochi boundary points of \(R \). For a metrizable compactification \(R'^* \) of \(R' \), we denote by \(\mathcal{A}(\phi) \) the set of all points in \(\Delta_i \) at which \(\phi \) has a fine limit in \(R'^* \). There are two typical extensions of Beurling's theorem [1] to analytic mappings of a Riemann surface to another one, i.e., Z. Kuramochi's [5, 6, 7] and C. Constantinescu and A. Cornea's theorems [3, 4]. The former result states that if \(\phi \) is an almost finitely sheeted mapping and \(R'^* \) is H.D. separative, then \(\mathcal{C}(\Delta_i - \mathcal{A}(\phi)) = 0 \). The latter one states that if \(\phi \) is a Dirichlet mapping and \(R'^* \) is a quotient space of the Royden compactification of \(R' \), then \(\mathcal{C}(\Delta_i - \mathcal{A}(\phi)) = 0 \). The present author [9] proved that these two results are independent. In this paper we shall give another extension of Beurling's theorem such that it contains the above two results: If \(\phi \) is a Dirichlet mapping and \(R'^* \) is H.D. separative, then Beurling's theorem is valid.

Notation and terminology

Let \(R \) be a hyperbolic Riemann surface. For a subset \(A \) of \(R \), we denote by \(\partial A \) and \(A^\epsilon \) the (relative) boundary and the interior of \(A \) respectively. We call a closed or open subset \(A \) of \(R \) is regular if \(\partial A \) is non-empty and consists of at most a countable number of analytic arcs clustering nowhere in \(R \). We fix a closed disk \(K_0 \) in \(R \) once for all and let \(R_0 = R - K_0 \).

1. Function spaces and compactifications (cf. [4]).

We denote by \(BC = BC(R) \) the space of all bounded continuous (real-valued) functions on \(R \). Let \(BCW = BCW(R) \) be (resp. \(BCD = BCD(R) \)) the family of all bounded continuous Wiener functions (resp. bounded continuous Dirichlet functions) on \(R \). It is known ([4]) that both \(BCW \) and \(BCD \) are vector sublattices of \(BC \) with respect to the maximum and minimum opera-