Characteristic Classes of Foliated Principal GL_r -Bundles

By Haruo Suzuki

Introduction

Let M be a paracompact Hausdorff differentiable (C^{∞}) manifold of dimension n and \mathscr{F} a differentiable (C^{∞}) condimension q foliation on M. We denote the manifold M with the foliation \mathscr{F} , by (M,\mathscr{F}) . Let $GL_r=GL(r,R)$ denote the group of $r\times r$ non-singular matrices over real numbers. A foliated principal GL_r -bundle $E(M,p,GL_r)$ over the (M,\mathscr{F}) is a differentiable (C^{∞}) principal GL_r -bundle $p:E\to M$, such that E has a right GL_r -invariant differentiable (C^{∞}) foliation \mathscr{F}_E , where each leaf is a covering of a leaf of \mathscr{F} . (Cf. P. Molino [4].) \mathscr{F}_E is called a lifted foliation of \mathscr{F} .

We generalize the Bott's construction of characteristic classes of a foliation (cf. R. Bott [1] and P. Molino [6]) to the foliated principal GL_r -bundles and we obtain several vanishing theorems of the characteristic classes. In particular, these theorems are remarkable in the case where $E(M, p, GL_r)$ admits a transverse projectable connection. P. Molino [6] obtains these theorems for the frame bundle of the normal bundle of the foliation (M, \mathcal{F}) . However, if M has two foliations \mathcal{F} and \mathcal{F}' of condimensions q and r respectively $(q \ge r)$ such that the tangent subbundle F of \mathcal{F} is a subbundle of the tangent subbundle F' of \mathcal{F}' , then we can construct a foliated principal GL_r -bundle $E(M, p, GL_r)$ over (M, \mathcal{F}) and our generalized arguments of characteristic classes are applied to such foliated principal bundles.

Some applications of our theorems will be given in a subsequent note.

§ 1. A transverse connection

A connection on the foliated principal GL_r -bundle E(M, p, GL) over the foliated manifold (M, \mathscr{F}) is said to be a *transverse* connection, if leaves of the lifted foliation \mathscr{F}_E of \mathscr{F} are horizontal for the connection. (Cf. P. Molino [4].) In this section, we shall introduce characteristic classes of the foliated principal GL_r -bundle by the notion of the transverse connection.

Let gl_r denote the Lie algebra of GL_r and $I(gl_r)$ denote the algebra of invariant polynomials of gl_r . Let V^1 be a transverse connection on the $E(M,p,GL_r)$. It is easy to see that the $E(M,p,GL_r)$ admits a transverse connection.