Convolutions of measures on some thin sets

By Enji SATO

(Received November 13, 1976)

1. Introduction.

Let G be a LCA group with dual \widehat{G} , and E a compact subset of G. Following Rudin [4], we say that E is a Kronecker set if, to each $f \in C(E)$ with |f|=1 and $\varepsilon>0$, there exists $\gamma \in \widehat{G}$ such that $||f-\gamma||_E < \varepsilon$. Let also $T=\{|z|=1\}$ be the circle group. Then in [2; Lemma 6.10], T. W. Körner proved that there exist two Kronecker sets K_1 and $K_2 \subset T$, both homeomorphic to $D_2=\{0,1\}^{\infty}$, and two nonzero nonnegative Borel measures μ_1 on K_1 and μ_2 on K_2 , such that $K_1+K_2=T$, and $\mu_1*\mu_2\in C^{\infty}(T)$.

In this paper, we prove analogs to the above result for general LCA groups. I thank Professor S. Saeki for his useful advices.

2. Notations.

Throughout this paper, G is used to denote a nondiscrete LCA group. We shall respectively denote by $A(G) = (L^1(\widehat{G}))^{\smallfrown}$ and $C_c(G)$, the Fourier algebra of G, and the set of all continuous functions with compact support. Also we shall respectively denote by M(G), $M_c(G)$, and $M_0(G)$, the measure algebra of all bounded regular measures on G, the set of all continuous measures in M(G), and the set of those measures $\mu \in M(G)$ whose Fourier-Stieltjes transforms vanish at infinity. For $\mu \in M(G)$, $\|\mu\|$ will denote the total variation norm. The symbols $C_c^+(G)$, $M^+(G)$, and $M_c^+(G)$, will designate the set of all nonnegative functions in $C_c(G)$, the set of all nonnegative measures in M(G), and the set of all nonnegative measures in $M_c(G)$, respectively. For μ , $\nu \in M(G)$, we write $\mu \perp \nu$ if μ and ν are mutually singular. We set $M_0^+(G) = \{\mu \in M(G) | \mu \text{ is singular with each } \nu \in M_0(G) \}$. For the other notation, we refer to Rudin [4].

DEFINITION 1. Let 0 be the unit of G. $q(G) = \sup \{s | \text{every neighborhood } 0 \in G \text{ contains an element of order } \geq s\}$.

DEFINITION 2. Let $q \ge 2$ be an integer, and E a totally disconnected compact subset of G. We say that E is a K_q -set if, to each $f \in C(E)$ with $f^q = 1$, there exists $\gamma \in \widehat{G}$ such that $f = \gamma$ on E.