On integrability conditions on the space of sections of jet-bundles

By Yoshifumi Ando

(Received October 28, 1977; Revised February 22, 1978)

§ 1. Introduction

Let N be a n dimensional differentiable manifold. We consider a differentiable bundle E(N) over N with projection π and the bundle $E^r(N)$ of r-jets of local sections of E(N). Let Ω be an open set of $E^r(N)$. Then we let $\Gamma_{\alpha}E$ be the space of C^r sections, $s: N \rightarrow E(N)$ such that $j^rs(N)$ is contained in Ω equipped with C^r topology. We let $\Gamma_{\alpha}E^r$ be the space of continuous sections: $N \rightarrow E^r(N)$ whose image is contained in Ω , equipped with compact-open topology (An element of $\Gamma_{\alpha}E$ or $\Gamma_{\alpha}E^r$ will be called Ω -regular). Then there is a natural map $j^r: \Gamma_{\alpha}E \rightarrow \Gamma_{\alpha}E^r$. We discuss how the map j^r is close to a weak homotopy equivalence. This is related with the integrability of sections of $E^r(N)$ up to homotopy.

THEOREM. Let Ω and Ω' be open sets in $E^r(N)$ with $\Omega \supseteq \Omega'$. Let $\Omega - \Omega'$ is a finite union of regular submanifolds of Ω with codimensions greater than $n + \sigma$.

- (i) If $j^r: \Gamma_{\varrho}, E \to \Gamma_{\varrho}, E^r$ is a τ -homotopy equivalence, then $j^r: \Gamma_{\varrho}E \to \Gamma_{\varrho}E^r$ is a $\min(\tau, \sigma)$ -homotopy equivalence.
- (ii) If $j^r: \Gamma_{\sigma} E \to \Gamma_{\sigma} E^r$ induces the isomorphisms of i dimensional homotopy groups $(0 \le i \le \tau)$, then $j^r: \Gamma_{\sigma} E \to \Gamma_{\sigma} E^r$ induces the isomorphisms of i dimensional homotopy groups $(0 \le \tau \le \min(\tau, \sigma) 1)$.

A j-homotopy equivalence means the isomorphisms of i dimensional homotopy groups $(0 \le i < j)$ and a surjection of j dimensional homotopy groups.

This theorem is a generalization of Transversality lemma due to A. du Plessis in [5] which is the case of differentiable maps of the above theorem. The applications of the theorem are given in § 4 to the cace of Thom-Boardman singularities ([2, 7, 9]). The proof is based on the transversality arguments.

All manifolds should be paracompact and Hausdorff.

§ 2. A variant of Thom's transversality theorem

In this section we will show a variant of Thom's transversality theorem.